触手机械手的变结构控制器

M. Ivanescu, V. Stoian
{"title":"触手机械手的变结构控制器","authors":"M. Ivanescu, V. Stoian","doi":"10.1109/ROBOT.1995.525734","DOIUrl":null,"url":null,"abstract":"The paper presents a class of tentacle arms based on the use of flexible composite materials in conjunction with active-controllable electrorheological (ER) fluids. The model consists of a finite number of segments, each segment having a specific structure and control. The dynamic behaviour of the arm is obtained using Lagrange's principle developed for infinite-dimensional systems. This model is represented by a set of integral-differential equations. An approximate model is then derived as a set of differential equations with variable coefficients. Two cases are discussed: the sliding mode with the bang-bang control; and the direct mode in which the controller is based on the use of the direct evolution of the system on the switching line by switching the fluid viscosity. The numerical simulations are presented. A nonlinear observer is introduced to estimate the inaccessible state variable distributed on the length of the arm. The conditions which assure the convergence to zero of the errors are proved.","PeriodicalId":432931,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"A variable structure controller for a tentacle manipulator\",\"authors\":\"M. Ivanescu, V. Stoian\",\"doi\":\"10.1109/ROBOT.1995.525734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a class of tentacle arms based on the use of flexible composite materials in conjunction with active-controllable electrorheological (ER) fluids. The model consists of a finite number of segments, each segment having a specific structure and control. The dynamic behaviour of the arm is obtained using Lagrange's principle developed for infinite-dimensional systems. This model is represented by a set of integral-differential equations. An approximate model is then derived as a set of differential equations with variable coefficients. Two cases are discussed: the sliding mode with the bang-bang control; and the direct mode in which the controller is based on the use of the direct evolution of the system on the switching line by switching the fluid viscosity. The numerical simulations are presented. A nonlinear observer is introduced to estimate the inaccessible state variable distributed on the length of the arm. The conditions which assure the convergence to zero of the errors are proved.\",\"PeriodicalId\":432931,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Robotics and Automation\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1995.525734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1995.525734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

本文介绍了一类基于柔性复合材料与主动可控电流变液结合使用的触手臂。该模型由有限数量的段组成,每个段具有特定的结构和控制。利用拉格朗日原理得到了机械臂的动力学特性。该模型由一组积分-微分方程表示。然后导出近似模型为一组变系数微分方程。讨论了两种情况:具有bang-bang控制的滑模;而在直接模式中,控制器是基于直接演化的开关线上通过切换流体粘度来实现系统的直接演化。并进行了数值模拟。引入非线性观测器来估计臂长上的不可达状态变量。证明了保证误差收敛于零的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A variable structure controller for a tentacle manipulator
The paper presents a class of tentacle arms based on the use of flexible composite materials in conjunction with active-controllable electrorheological (ER) fluids. The model consists of a finite number of segments, each segment having a specific structure and control. The dynamic behaviour of the arm is obtained using Lagrange's principle developed for infinite-dimensional systems. This model is represented by a set of integral-differential equations. An approximate model is then derived as a set of differential equations with variable coefficients. Two cases are discussed: the sliding mode with the bang-bang control; and the direct mode in which the controller is based on the use of the direct evolution of the system on the switching line by switching the fluid viscosity. The numerical simulations are presented. A nonlinear observer is introduced to estimate the inaccessible state variable distributed on the length of the arm. The conditions which assure the convergence to zero of the errors are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensorless Manipulation Using Transverse Vibrations of a Plate A four-wheeled robot to pass over steps by changing running control modes Fundamental considerations for the design of a planetary rover Handy rangefinder for active robot vision A foveated wide angle lens for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1