TanGo:用于地理分布式云中租户任务配置的成本优化框架

Luyao Luo, Gongming Zhao, Hong-Ze Xu, Zhuolong Yu, Liguang Xie
{"title":"TanGo:用于地理分布式云中租户任务配置的成本优化框架","authors":"Luyao Luo, Gongming Zhao, Hong-Ze Xu, Zhuolong Yu, Liguang Xie","doi":"10.1109/INFOCOM53939.2023.10229004","DOIUrl":null,"url":null,"abstract":"Cloud infrastructure has gradually displayed a tendency of geographical distribution in order to provide anywhere, anytime connectivity to tenants all over the world. The tenant task placement in geo-distributed clouds comes with three critical and coupled factors: regional diversity in electricity prices, access delay for tenants, and traffic demand among tasks. However, existing works disregard either the regional difference in electricity prices or the tenant requirements in geo-distributed clouds, resulting in increased operating costs or low user QoS. To bridge the gap, we design a cost optimization framework for tenant task placement in geo-distributed clouds, called TanGo. However, it is non-trivial to achieve an optimization framework while meeting all the tenant requirements. To this end, we first formulate the electricity cost minimization for task placement problem as a constrained mixed-integer non-linear programming problem. We then propose a near-optimal algorithm with a tight approximation ratio (1 − 1/e) using an effective submodular-based method. Results of in-depth simulations based on real-world datasets show the effectiveness of our algorithm as well as the overall 10%-30% reduction in electricity expenses compared to commonly-adopted alternatives.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TanGo: A Cost Optimization Framework for Tenant Task Placement in Geo-distributed Clouds\",\"authors\":\"Luyao Luo, Gongming Zhao, Hong-Ze Xu, Zhuolong Yu, Liguang Xie\",\"doi\":\"10.1109/INFOCOM53939.2023.10229004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud infrastructure has gradually displayed a tendency of geographical distribution in order to provide anywhere, anytime connectivity to tenants all over the world. The tenant task placement in geo-distributed clouds comes with three critical and coupled factors: regional diversity in electricity prices, access delay for tenants, and traffic demand among tasks. However, existing works disregard either the regional difference in electricity prices or the tenant requirements in geo-distributed clouds, resulting in increased operating costs or low user QoS. To bridge the gap, we design a cost optimization framework for tenant task placement in geo-distributed clouds, called TanGo. However, it is non-trivial to achieve an optimization framework while meeting all the tenant requirements. To this end, we first formulate the electricity cost minimization for task placement problem as a constrained mixed-integer non-linear programming problem. We then propose a near-optimal algorithm with a tight approximation ratio (1 − 1/e) using an effective submodular-based method. Results of in-depth simulations based on real-world datasets show the effectiveness of our algorithm as well as the overall 10%-30% reduction in electricity expenses compared to commonly-adopted alternatives.\",\"PeriodicalId\":387707,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM53939.2023.10229004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10229004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云基础设施逐渐呈现出地理分布的趋势,以便为世界各地的租户提供随时随地的连接。地理分布式云中的租户任务放置有三个关键且相互关联的因素:电价的区域多样性、租户的访问延迟以及任务之间的流量需求。然而,现有的工作忽略了电价的区域差异或地理分布式云中的租户需求,导致运营成本增加或用户QoS降低。为了弥补这一差距,我们设计了一个成本优化框架,用于在地理分布式云中放置租户任务,称为TanGo。然而,在满足所有租户需求的同时实现优化框架并非易事。为此,我们首先将任务布置问题的电力成本最小化问题表述为一个约束混合整数非线性规划问题。然后,我们使用有效的基于子模块的方法提出了具有紧密近似比(1−1/e)的近最优算法。基于真实世界数据集的深度模拟结果显示了我们的算法的有效性,并且与常用的替代方案相比,总体上减少了10%-30%的电费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TanGo: A Cost Optimization Framework for Tenant Task Placement in Geo-distributed Clouds
Cloud infrastructure has gradually displayed a tendency of geographical distribution in order to provide anywhere, anytime connectivity to tenants all over the world. The tenant task placement in geo-distributed clouds comes with three critical and coupled factors: regional diversity in electricity prices, access delay for tenants, and traffic demand among tasks. However, existing works disregard either the regional difference in electricity prices or the tenant requirements in geo-distributed clouds, resulting in increased operating costs or low user QoS. To bridge the gap, we design a cost optimization framework for tenant task placement in geo-distributed clouds, called TanGo. However, it is non-trivial to achieve an optimization framework while meeting all the tenant requirements. To this end, we first formulate the electricity cost minimization for task placement problem as a constrained mixed-integer non-linear programming problem. We then propose a near-optimal algorithm with a tight approximation ratio (1 − 1/e) using an effective submodular-based method. Results of in-depth simulations based on real-world datasets show the effectiveness of our algorithm as well as the overall 10%-30% reduction in electricity expenses compared to commonly-adopted alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
i-NVMe: Isolated NVMe over TCP for a Containerized Environment One Shot for All: Quick and Accurate Data Aggregation for LPWANs Joint Participation Incentive and Network Pricing Design for Federated Learning Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption Melody: Toward Resource-Efficient Packet Header Vector Encoding on Programmable Switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1