{"title":"SEA-CNN:时空数据库中连续k近邻查询的可扩展处理","authors":"Xiaopeng Xiong, M. Mokbel, Walid G. Aref","doi":"10.1109/ICDE.2005.128","DOIUrl":null,"url":null,"abstract":"Location-aware environments are characterized by a large number of objects and a large number of continuous queries. Both the objects and continuous queries may change their locations over time. In this paper, we focus on continuous k-nearest neighbor queries (CKNN, for short). We present a new algorithm, termed SEA-CNN, for answering continuously a collection of concurrent CKNN queries. SEA-CNN has two important features: incremental evaluation and shared execution. SEA-CNN achieves both efficiency and scalability in the presence of a set of concurrent queries. Furthermore, SEA-CNN does not make any assumptions about the movement of objects, e.g., the objects velocities and shapes of trajectories, or about the mutability of the objects and/or the queries, i.e., moving or stationary queries issued on moving or stationary objects. We provide theoretical analysis of SEA-CNN with respect to the execution costs, memory requirements and effects of tunable parameters. Comprehensive experimentation shows that SEA-CNN is highly scalable and is more efficient in terms of both I/O and CPU costs in comparison to other R-tree-based CKNN techniques.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":"{\"title\":\"SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases\",\"authors\":\"Xiaopeng Xiong, M. Mokbel, Walid G. Aref\",\"doi\":\"10.1109/ICDE.2005.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-aware environments are characterized by a large number of objects and a large number of continuous queries. Both the objects and continuous queries may change their locations over time. In this paper, we focus on continuous k-nearest neighbor queries (CKNN, for short). We present a new algorithm, termed SEA-CNN, for answering continuously a collection of concurrent CKNN queries. SEA-CNN has two important features: incremental evaluation and shared execution. SEA-CNN achieves both efficiency and scalability in the presence of a set of concurrent queries. Furthermore, SEA-CNN does not make any assumptions about the movement of objects, e.g., the objects velocities and shapes of trajectories, or about the mutability of the objects and/or the queries, i.e., moving or stationary queries issued on moving or stationary objects. We provide theoretical analysis of SEA-CNN with respect to the execution costs, memory requirements and effects of tunable parameters. Comprehensive experimentation shows that SEA-CNN is highly scalable and is more efficient in terms of both I/O and CPU costs in comparison to other R-tree-based CKNN techniques.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"336\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases
Location-aware environments are characterized by a large number of objects and a large number of continuous queries. Both the objects and continuous queries may change their locations over time. In this paper, we focus on continuous k-nearest neighbor queries (CKNN, for short). We present a new algorithm, termed SEA-CNN, for answering continuously a collection of concurrent CKNN queries. SEA-CNN has two important features: incremental evaluation and shared execution. SEA-CNN achieves both efficiency and scalability in the presence of a set of concurrent queries. Furthermore, SEA-CNN does not make any assumptions about the movement of objects, e.g., the objects velocities and shapes of trajectories, or about the mutability of the objects and/or the queries, i.e., moving or stationary queries issued on moving or stationary objects. We provide theoretical analysis of SEA-CNN with respect to the execution costs, memory requirements and effects of tunable parameters. Comprehensive experimentation shows that SEA-CNN is highly scalable and is more efficient in terms of both I/O and CPU costs in comparison to other R-tree-based CKNN techniques.