Bhargav Mahesh, E. Prassler, Teena Hassan, Jens-Uwe Garbas
{"title":"对多模态人体应力检测参考数据集的要求","authors":"Bhargav Mahesh, E. Prassler, Teena Hassan, Jens-Uwe Garbas","doi":"10.1109/PERCOMW.2019.8730884","DOIUrl":null,"url":null,"abstract":"Stress is necessary for optimal performance and functioning in daily life. However, when stress exceeds person-specific coping levels, then it begins to negatively impact health and productivity. An automatic stress monitoring system that tracks stress levels based on physical and physiological parameters, can assist the user in maintaining stress within healthy limits. In order to build such a system, we need to develop and test various algorithms on a reference dataset consisting of multimodal stress responses. Such a reference dataset should fulfil requirements derived from results and practices of clinical and empirical research. This paper proposes a set of such requirements to support the establishment of a reference dataset for multimodal human stress detection. The requirements cover person-dependent and technical aspects such as selection of sample population, choice of stress stimuli, inclusion of multiple stress modalities, selection of annotation methods, and selection of data acquisition devices. Existing publicly available stress datasets were evaluated based on criteria derived from the proposed requirements. It was found that none of these datasets completely fulfilled the requirements. Therefore, efforts should be made in the future to establish a reference dataset, satisfying the specified requirements, in order to ensure comparability and reliability of results.","PeriodicalId":437017,"journal":{"name":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Requirements for a Reference Dataset for Multimodal Human Stress Detection\",\"authors\":\"Bhargav Mahesh, E. Prassler, Teena Hassan, Jens-Uwe Garbas\",\"doi\":\"10.1109/PERCOMW.2019.8730884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stress is necessary for optimal performance and functioning in daily life. However, when stress exceeds person-specific coping levels, then it begins to negatively impact health and productivity. An automatic stress monitoring system that tracks stress levels based on physical and physiological parameters, can assist the user in maintaining stress within healthy limits. In order to build such a system, we need to develop and test various algorithms on a reference dataset consisting of multimodal stress responses. Such a reference dataset should fulfil requirements derived from results and practices of clinical and empirical research. This paper proposes a set of such requirements to support the establishment of a reference dataset for multimodal human stress detection. The requirements cover person-dependent and technical aspects such as selection of sample population, choice of stress stimuli, inclusion of multiple stress modalities, selection of annotation methods, and selection of data acquisition devices. Existing publicly available stress datasets were evaluated based on criteria derived from the proposed requirements. It was found that none of these datasets completely fulfilled the requirements. Therefore, efforts should be made in the future to establish a reference dataset, satisfying the specified requirements, in order to ensure comparability and reliability of results.\",\"PeriodicalId\":437017,\"journal\":{\"name\":\"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2019.8730884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2019.8730884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Requirements for a Reference Dataset for Multimodal Human Stress Detection
Stress is necessary for optimal performance and functioning in daily life. However, when stress exceeds person-specific coping levels, then it begins to negatively impact health and productivity. An automatic stress monitoring system that tracks stress levels based on physical and physiological parameters, can assist the user in maintaining stress within healthy limits. In order to build such a system, we need to develop and test various algorithms on a reference dataset consisting of multimodal stress responses. Such a reference dataset should fulfil requirements derived from results and practices of clinical and empirical research. This paper proposes a set of such requirements to support the establishment of a reference dataset for multimodal human stress detection. The requirements cover person-dependent and technical aspects such as selection of sample population, choice of stress stimuli, inclusion of multiple stress modalities, selection of annotation methods, and selection of data acquisition devices. Existing publicly available stress datasets were evaluated based on criteria derived from the proposed requirements. It was found that none of these datasets completely fulfilled the requirements. Therefore, efforts should be made in the future to establish a reference dataset, satisfying the specified requirements, in order to ensure comparability and reliability of results.