地热、高温油气井井底温度过高导致井下工具失效的预防策略

M. Khaled, Ningyu Wang, P. Ashok, Dongmei Chen, E. van Oort
{"title":"地热、高温油气井井底温度过高导致井下工具失效的预防策略","authors":"M. Khaled, Ningyu Wang, P. Ashok, Dongmei Chen, E. van Oort","doi":"10.2118/212550-ms","DOIUrl":null,"url":null,"abstract":"\n High bottom hole temperature can lead to decreased downhole tool life in geothermal and high temperature / high pressure (HPHT) oil and gas wells. The temperature increase is exacerbated when circulation stops, e.g., during connection, tripping, well control situations, etc. While continuous circulation technology is an appropriate solution for managing temperature, it is not yet widely adopted in HPHT and geothermal drilling practices. This work investigates factors that impact downhole temperature and recommends strategies to better manage the temperature when continuous circulation is not available.\n An integrated thermo-hydraulic model was developed to capture the transient behavior of downhole temperature and was applied here to study the transient temperature profile when there is no fluid circulation. The model was validated using the open-source FORGE field dataset, with the mean absolute percentage error (MAPE) between 1-4%. In addition, hundreds of case scenarios were numerically studied to investigate the impact of several key factors on the downhole temperature.\n The evaluated factors include the pump-off time, type and physical properties of the drilling fluid, wellbore hydraulic diameter, reservoir temperature, geothermal gradient, total wellbore depth and profile, and operational parameters prior to stopping the circulation. The cooling effects of different drilling parameters were compared to a benchmark case of continuous circulation. A correlation map was generated to visualize the impact of those parameters on the downhole temperature distribution when circulation stops. A logarithmic relationship between the pump stop time and the downhole temperature was observed. For the FORGE case scenario, the downhole temperature increases by 27 °C and 48 °C after the pump stops for 30 and 60 minutes, respectively. It was observed that water-based mud with a high viscosity increases fluid convection heat resistance between the formation and wellbore. Also, drilling with a higher flow rate before stopping the pump can cool the near-wellbore formation faster and reduces the downhole temperature even after circulation ceases. Wells with high geothermal gradients, like FORGE wells, have higher temperature build-up during circulation stoppage than wells with low geothermal gradients targeting the same reservoir (formation) in-situ temperature.\n This study investigates the efficacy of different cooling strategies to avoid downhole temperature build-up when there is no circulation. It thereby facilitates the optimization of geothermal and HPHT well design and construction to prevent downhole tool failures. The developed correlation map can aid drilling engineers understand the impact of different drilling conditions on the downhole temperature.","PeriodicalId":255336,"journal":{"name":"Day 3 Thu, March 09, 2023","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for Prevention of Downhole Tool Failure Caused by High Bottomhole Temperature in Geothermal and HPHT Oil and Gas Wells\",\"authors\":\"M. Khaled, Ningyu Wang, P. Ashok, Dongmei Chen, E. van Oort\",\"doi\":\"10.2118/212550-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n High bottom hole temperature can lead to decreased downhole tool life in geothermal and high temperature / high pressure (HPHT) oil and gas wells. The temperature increase is exacerbated when circulation stops, e.g., during connection, tripping, well control situations, etc. While continuous circulation technology is an appropriate solution for managing temperature, it is not yet widely adopted in HPHT and geothermal drilling practices. This work investigates factors that impact downhole temperature and recommends strategies to better manage the temperature when continuous circulation is not available.\\n An integrated thermo-hydraulic model was developed to capture the transient behavior of downhole temperature and was applied here to study the transient temperature profile when there is no fluid circulation. The model was validated using the open-source FORGE field dataset, with the mean absolute percentage error (MAPE) between 1-4%. In addition, hundreds of case scenarios were numerically studied to investigate the impact of several key factors on the downhole temperature.\\n The evaluated factors include the pump-off time, type and physical properties of the drilling fluid, wellbore hydraulic diameter, reservoir temperature, geothermal gradient, total wellbore depth and profile, and operational parameters prior to stopping the circulation. The cooling effects of different drilling parameters were compared to a benchmark case of continuous circulation. A correlation map was generated to visualize the impact of those parameters on the downhole temperature distribution when circulation stops. A logarithmic relationship between the pump stop time and the downhole temperature was observed. For the FORGE case scenario, the downhole temperature increases by 27 °C and 48 °C after the pump stops for 30 and 60 minutes, respectively. It was observed that water-based mud with a high viscosity increases fluid convection heat resistance between the formation and wellbore. Also, drilling with a higher flow rate before stopping the pump can cool the near-wellbore formation faster and reduces the downhole temperature even after circulation ceases. Wells with high geothermal gradients, like FORGE wells, have higher temperature build-up during circulation stoppage than wells with low geothermal gradients targeting the same reservoir (formation) in-situ temperature.\\n This study investigates the efficacy of different cooling strategies to avoid downhole temperature build-up when there is no circulation. It thereby facilitates the optimization of geothermal and HPHT well design and construction to prevent downhole tool failures. The developed correlation map can aid drilling engineers understand the impact of different drilling conditions on the downhole temperature.\",\"PeriodicalId\":255336,\"journal\":{\"name\":\"Day 3 Thu, March 09, 2023\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, March 09, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/212550-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 09, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/212550-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在地热和高温高压(HPHT)油气井中,井底温度过高会导致井下工具寿命缩短。当循环停止时,例如在连接、起下钻、井控等情况下,温度升高会加剧。虽然连续循环技术是一种合适的温度管理方案,但在高温高压和地热钻井实践中尚未得到广泛应用。这项工作调查了影响井下温度的因素,并提出了在无法进行连续循环时更好地控制温度的策略。为了捕捉井下温度的瞬态行为,建立了一个集成的热-水力模型,并将其应用于无流体循环时的瞬态温度分布。该模型使用开源FORGE现场数据集进行验证,平均绝对百分比误差(MAPE)在1-4%之间。此外,还对数百种情况进行了数值研究,以研究几个关键因素对井下温度的影响。评估因素包括停泵时间、钻井液类型和物理性质、井筒水力直径、储层温度、地热梯度、井筒总深度和剖面以及停止循环前的操作参数。以连续循环为基准,对比了不同钻井参数的冷却效果。当循环停止时,这些参数对井下温度分布的影响会生成相关图。停泵时间与井下温度呈对数关系。在FORGE情况下,泵停泵30分钟和60分钟后,井下温度分别升高27°C和48°C。研究发现,高粘度的水基泥浆增加了地层与井筒之间的流体对流热阻。此外,在停止泵之前以更高的流量进行钻井,可以更快地冷却近井地层,即使在循环停止后也能降低井下温度。在相同的储层(地层)原位温度条件下,高地温梯度井(如FORGE井)在循环停止时的温度累积高于低地温梯度井。本研究考察了不同冷却策略的有效性,以避免在没有循环的情况下井下温度升高。因此,它有助于优化地热和高温高压井的设计和施工,以防止井下工具失效。开发的相关图可以帮助钻井工程师了解不同钻井条件对井下温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies for Prevention of Downhole Tool Failure Caused by High Bottomhole Temperature in Geothermal and HPHT Oil and Gas Wells
High bottom hole temperature can lead to decreased downhole tool life in geothermal and high temperature / high pressure (HPHT) oil and gas wells. The temperature increase is exacerbated when circulation stops, e.g., during connection, tripping, well control situations, etc. While continuous circulation technology is an appropriate solution for managing temperature, it is not yet widely adopted in HPHT and geothermal drilling practices. This work investigates factors that impact downhole temperature and recommends strategies to better manage the temperature when continuous circulation is not available. An integrated thermo-hydraulic model was developed to capture the transient behavior of downhole temperature and was applied here to study the transient temperature profile when there is no fluid circulation. The model was validated using the open-source FORGE field dataset, with the mean absolute percentage error (MAPE) between 1-4%. In addition, hundreds of case scenarios were numerically studied to investigate the impact of several key factors on the downhole temperature. The evaluated factors include the pump-off time, type and physical properties of the drilling fluid, wellbore hydraulic diameter, reservoir temperature, geothermal gradient, total wellbore depth and profile, and operational parameters prior to stopping the circulation. The cooling effects of different drilling parameters were compared to a benchmark case of continuous circulation. A correlation map was generated to visualize the impact of those parameters on the downhole temperature distribution when circulation stops. A logarithmic relationship between the pump stop time and the downhole temperature was observed. For the FORGE case scenario, the downhole temperature increases by 27 °C and 48 °C after the pump stops for 30 and 60 minutes, respectively. It was observed that water-based mud with a high viscosity increases fluid convection heat resistance between the formation and wellbore. Also, drilling with a higher flow rate before stopping the pump can cool the near-wellbore formation faster and reduces the downhole temperature even after circulation ceases. Wells with high geothermal gradients, like FORGE wells, have higher temperature build-up during circulation stoppage than wells with low geothermal gradients targeting the same reservoir (formation) in-situ temperature. This study investigates the efficacy of different cooling strategies to avoid downhole temperature build-up when there is no circulation. It thereby facilitates the optimization of geothermal and HPHT well design and construction to prevent downhole tool failures. The developed correlation map can aid drilling engineers understand the impact of different drilling conditions on the downhole temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geothermal Drilling – Collaborative and Holistic Applications Specific Solutions Drive Consistent Improvements in Drilling Efficiency and Operational Costs Downhole Trajectory Automation of RSS Tools: Autonomous Drilling Becomes Reality While-Drilling Pore Pressure Surveillance Using Machine Learning Drilling Three-Mile Laterals Tighter and Safer with a New Magnetic Reference Technique Continuous or Stacked Cement Bond Logs – Does It Matter?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1