基于递归二元粒子群算法的人脸定位

N. Sanket, K. Manikantan, S. Ramachandran
{"title":"基于递归二元粒子群算法的人脸定位","authors":"N. Sanket, K. Manikantan, S. Ramachandran","doi":"10.1109/NCVPRIPG.2013.6776227","DOIUrl":null,"url":null,"abstract":"Face Localization on frontal pose grayscale images under varying conditions of illumination, background and gender is challenging. Developing a robust technique to handle all the aforementioned variations requires a lot of training time and hardware to obtain a good localization rate. In this paper, a novel Recursive Binary Particle Swarm Optimization is proposed, to create a generic template of the face. This template is then used for template matching in the Block DCT Signal Space to obtain the position of the face in the test image. Experimental results, obtained by applying the proposed algorithm on CalTech, FERET and Extended Yale B face databases, show that the proposed system provides good localization rates with a low training time.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"558 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recursive Binary Particle Swarm Optimization based Face Localization\",\"authors\":\"N. Sanket, K. Manikantan, S. Ramachandran\",\"doi\":\"10.1109/NCVPRIPG.2013.6776227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face Localization on frontal pose grayscale images under varying conditions of illumination, background and gender is challenging. Developing a robust technique to handle all the aforementioned variations requires a lot of training time and hardware to obtain a good localization rate. In this paper, a novel Recursive Binary Particle Swarm Optimization is proposed, to create a generic template of the face. This template is then used for template matching in the Block DCT Signal Space to obtain the position of the face in the test image. Experimental results, obtained by applying the proposed algorithm on CalTech, FERET and Extended Yale B face databases, show that the proposed system provides good localization rates with a low training time.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"558 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在不同光照、背景和性别条件下,正面灰度图像的人脸定位具有挑战性。开发一种健壮的技术来处理上述所有变化需要大量的训练时间和硬件来获得良好的定位率。本文提出了一种新的递归二元粒子群优化算法,用于人脸通用模板的生成。然后使用该模板在块DCT信号空间中进行模板匹配,得到人脸在测试图像中的位置。将该算法应用于CalTech、FERET和Extended Yale B人脸数据库的实验结果表明,该算法具有较好的定位率和较低的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive Binary Particle Swarm Optimization based Face Localization
Face Localization on frontal pose grayscale images under varying conditions of illumination, background and gender is challenging. Developing a robust technique to handle all the aforementioned variations requires a lot of training time and hardware to obtain a good localization rate. In this paper, a novel Recursive Binary Particle Swarm Optimization is proposed, to create a generic template of the face. This template is then used for template matching in the Block DCT Signal Space to obtain the position of the face in the test image. Experimental results, obtained by applying the proposed algorithm on CalTech, FERET and Extended Yale B face databases, show that the proposed system provides good localization rates with a low training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1