不容易检测对抗性示例:绕过十种检测方法

Nicholas Carlini, D. Wagner
{"title":"不容易检测对抗性示例:绕过十种检测方法","authors":"Nicholas Carlini, D. Wagner","doi":"10.1145/3128572.3140444","DOIUrl":null,"url":null,"abstract":"Neural networks are known to be vulnerable to adversarial examples: inputs that are close to natural inputs but classified incorrectly. In order to better understand the space of adversarial examples, we survey ten recent proposals that are designed for detection and compare their efficacy. We show that all can be defeated by constructing new loss functions. We conclude that adversarial examples are significantly harder to detect than previously appreciated, and the properties believed to be intrinsic to adversarial examples are in fact not. Finally, we propose several simple guidelines for evaluating future proposed defenses.","PeriodicalId":318259,"journal":{"name":"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1622","resultStr":"{\"title\":\"Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods\",\"authors\":\"Nicholas Carlini, D. Wagner\",\"doi\":\"10.1145/3128572.3140444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are known to be vulnerable to adversarial examples: inputs that are close to natural inputs but classified incorrectly. In order to better understand the space of adversarial examples, we survey ten recent proposals that are designed for detection and compare their efficacy. We show that all can be defeated by constructing new loss functions. We conclude that adversarial examples are significantly harder to detect than previously appreciated, and the properties believed to be intrinsic to adversarial examples are in fact not. Finally, we propose several simple guidelines for evaluating future proposed defenses.\",\"PeriodicalId\":318259,\"journal\":{\"name\":\"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1622\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3128572.3140444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128572.3140444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1622

摘要

众所周知,神经网络很容易受到对抗性示例的影响:与自然输入接近但分类错误的输入。为了更好地理解对抗性示例的空间,我们调查了最近设计用于检测的十个建议,并比较了它们的有效性。我们证明了这一切都可以通过构造新的损失函数来克服。我们得出的结论是,对抗性示例比以前所认识到的更难检测,并且被认为是对抗性示例固有的属性实际上并非如此。最后,我们提出了几个简单的准则来评估未来提议的防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Neural networks are known to be vulnerable to adversarial examples: inputs that are close to natural inputs but classified incorrectly. In order to better understand the space of adversarial examples, we survey ten recent proposals that are designed for detection and compare their efficacy. We show that all can be defeated by constructing new loss functions. We conclude that adversarial examples are significantly harder to detect than previously appreciated, and the properties believed to be intrinsic to adversarial examples are in fact not. Finally, we propose several simple guidelines for evaluating future proposed defenses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Deep Learning Session details: Lightning Round Malware Analysis of Imaged Binary Samples by Convolutional Neural Network with Attention Mechanism Generating Look-alike Names For Security Challenges An Early Warning System for Suspicious Accounts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1