NetFC:在可编程交换机上实现精确浮点运算

Penglai Cui, H. Pan, Zhenyu Li, Jiaoren Wu, Shengzhuo Zhang, Xingwu Yang, Hongtao Guan, Gaogang Xie
{"title":"NetFC:在可编程交换机上实现精确浮点运算","authors":"Penglai Cui, H. Pan, Zhenyu Li, Jiaoren Wu, Shengzhuo Zhang, Xingwu Yang, Hongtao Guan, Gaogang Xie","doi":"10.1109/ICNP52444.2021.9651946","DOIUrl":null,"url":null,"abstract":"Programmable switches are recently used for accelerating data-intensive distributed applications. Some computational tasks, traditionally performed on servers in data centers, are offloaded to the network on programmable switches. These tasks may require the support of on-the-fly floatingpoint operations. Unfortunately, the computational capacity of programmable switches is limited to simple integer arithmetic operations. To address this issue, prior approaches either adopt a float-to-integer method or rely on local CPUs of switches, incurring accuracy loss and delayed processing.To this end, we propose NetFC, a table-lookup method to achieve on-the-fly in-network floating-point arithmetic operations nearly without accuracy loss. NetFC adopts a divide-and-conquer mechanism that converts the original huge table into several much smaller tables that are operated by the built-in integer operations. NetFC further leverages a scaling-factor mechanism for improving computational accuracy, and a prefix-based lossless table compression method to reduce memory consumption. We use both synthetic and real-life datasets to evaluate NetFC. The experimental results show that the average accuracy of NetFC is above 99.94% with only 448KB memory consumption. Furthermore, we integrate NetFC into Sonata [12] for detecting Slowloris attack, yielding significant decrease of detection delay.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"NetFC: Enabling Accurate Floating-point Arithmetic on Programmable Switches\",\"authors\":\"Penglai Cui, H. Pan, Zhenyu Li, Jiaoren Wu, Shengzhuo Zhang, Xingwu Yang, Hongtao Guan, Gaogang Xie\",\"doi\":\"10.1109/ICNP52444.2021.9651946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmable switches are recently used for accelerating data-intensive distributed applications. Some computational tasks, traditionally performed on servers in data centers, are offloaded to the network on programmable switches. These tasks may require the support of on-the-fly floatingpoint operations. Unfortunately, the computational capacity of programmable switches is limited to simple integer arithmetic operations. To address this issue, prior approaches either adopt a float-to-integer method or rely on local CPUs of switches, incurring accuracy loss and delayed processing.To this end, we propose NetFC, a table-lookup method to achieve on-the-fly in-network floating-point arithmetic operations nearly without accuracy loss. NetFC adopts a divide-and-conquer mechanism that converts the original huge table into several much smaller tables that are operated by the built-in integer operations. NetFC further leverages a scaling-factor mechanism for improving computational accuracy, and a prefix-based lossless table compression method to reduce memory consumption. We use both synthetic and real-life datasets to evaluate NetFC. The experimental results show that the average accuracy of NetFC is above 99.94% with only 448KB memory consumption. Furthermore, we integrate NetFC into Sonata [12] for detecting Slowloris attack, yielding significant decrease of detection delay.\",\"PeriodicalId\":343813,\"journal\":{\"name\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP52444.2021.9651946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

可编程交换机最近被用于加速数据密集型分布式应用。一些传统上在数据中心的服务器上执行的计算任务,通过可编程交换机转移到网络上。这些任务可能需要支持动态浮点操作。不幸的是,可编程开关的计算能力仅限于简单的整数算术运算。为了解决这个问题,以前的方法要么采用浮点到整数的方法,要么依赖交换机的本地cpu,这会导致精度损失和处理延迟。为此,我们提出了NetFC,这是一种表查找方法,可以在几乎没有精度损失的情况下实现网络中的动态浮点算术运算。NetFC采用了一种分而治之的机制,将原来的大表转换成几个更小的表,这些表由内置的整数操作来操作。NetFC进一步利用缩放因子机制来提高计算精度,并利用基于前缀的无损表压缩方法来减少内存消耗。我们使用合成数据集和真实数据集来评估NetFC。实验结果表明,在仅消耗448KB内存的情况下,NetFC的平均准确率达到99.94%以上。此外,我们将NetFC集成到Sonata[12]中用于检测Slowloris攻击,显著降低了检测延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NetFC: Enabling Accurate Floating-point Arithmetic on Programmable Switches
Programmable switches are recently used for accelerating data-intensive distributed applications. Some computational tasks, traditionally performed on servers in data centers, are offloaded to the network on programmable switches. These tasks may require the support of on-the-fly floatingpoint operations. Unfortunately, the computational capacity of programmable switches is limited to simple integer arithmetic operations. To address this issue, prior approaches either adopt a float-to-integer method or rely on local CPUs of switches, incurring accuracy loss and delayed processing.To this end, we propose NetFC, a table-lookup method to achieve on-the-fly in-network floating-point arithmetic operations nearly without accuracy loss. NetFC adopts a divide-and-conquer mechanism that converts the original huge table into several much smaller tables that are operated by the built-in integer operations. NetFC further leverages a scaling-factor mechanism for improving computational accuracy, and a prefix-based lossless table compression method to reduce memory consumption. We use both synthetic and real-life datasets to evaluate NetFC. The experimental results show that the average accuracy of NetFC is above 99.94% with only 448KB memory consumption. Furthermore, we integrate NetFC into Sonata [12] for detecting Slowloris attack, yielding significant decrease of detection delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting WiFi AP for Simultaneous Data Dissemination among WiFi and ZigBee Devices Highway On-Ramp Merging for Mixed Traffic: Recent Advances and Future Trends Generalizable and Interpretable Deep Learning for Network Congestion Prediction DNSonChain: Delegating Privacy-Preserved DNS Resolution to Blockchain ISP Self-Operated BGP Anomaly Detection Based on Weakly Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1