{"title":"绝对安全的信息传输","authors":"D. Dolev, C. Dwork, Orli Waarts, M. Yung","doi":"10.1145/138027.138036","DOIUrl":null,"url":null,"abstract":"The problem of perfectly secure communication in a general network in which processors and communication lines may be faulty is studied. Lower bounds are obtained on the connectivity required for successful secure communication. Efficient algorithms that operate with this connectivity and rely on no complexity theoretic assumptions are derived. These are the first algorithms for secure communication in a general network to achieve simultaneously the goals of perfect secrecy, perfect resiliency, and a worst case time which is linear in the diameter of the network.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"546 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"441","resultStr":"{\"title\":\"Perfectly secure message transmission\",\"authors\":\"D. Dolev, C. Dwork, Orli Waarts, M. Yung\",\"doi\":\"10.1145/138027.138036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of perfectly secure communication in a general network in which processors and communication lines may be faulty is studied. Lower bounds are obtained on the connectivity required for successful secure communication. Efficient algorithms that operate with this connectivity and rely on no complexity theoretic assumptions are derived. These are the first algorithms for secure communication in a general network to achieve simultaneously the goals of perfect secrecy, perfect resiliency, and a worst case time which is linear in the diameter of the network.<<ETX>>\",\"PeriodicalId\":271949,\"journal\":{\"name\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"volume\":\"546 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"441\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/138027.138036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/138027.138036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The problem of perfectly secure communication in a general network in which processors and communication lines may be faulty is studied. Lower bounds are obtained on the connectivity required for successful secure communication. Efficient algorithms that operate with this connectivity and rely on no complexity theoretic assumptions are derived. These are the first algorithms for secure communication in a general network to achieve simultaneously the goals of perfect secrecy, perfect resiliency, and a worst case time which is linear in the diameter of the network.<>