{"title":"纳秒激光烧蚀al2o3微通道的实验研究","authors":"Junyi Wang, Xiubing Jing, Jianlin Sun, Yongqin Ren, Qilei Zhai","doi":"10.1109/3M-NANO56083.2022.9941591","DOIUrl":null,"url":null,"abstract":"In this paper, a nanosecond pulse laser is used to fabricate micro-channels on the Al2O3surface, and the effect of laser parameters (power, scanning speed, and scanning times) on micro-channel characteristics is investigated. Surface morphology, cross-section profile, and chemical composition are characterized by scanning electron microscope (SEM), confocal laser microscopy, and X-ray photoelectron spectroscopy (XPS). Results show that a series of phenomena such as melting, evaporation, flow, and resolidification occur during laser ablation, which lead to micro-channel structure and obvious heat-affected zone (HAZ) generated on the surface. Meanwhile, the laser parameters have significant effects on the micro-channel morphology by changing the surface energy accumulation. XPS results show that oxygen content increased and carbon content decreased after laser ablation, and a new aluminum-containing compound AlN was produced, which leads to the formation of partial cracks on the sample surface.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Micro-channel in Al2O3by Nanosecond Laser Ablation\",\"authors\":\"Junyi Wang, Xiubing Jing, Jianlin Sun, Yongqin Ren, Qilei Zhai\",\"doi\":\"10.1109/3M-NANO56083.2022.9941591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nanosecond pulse laser is used to fabricate micro-channels on the Al2O3surface, and the effect of laser parameters (power, scanning speed, and scanning times) on micro-channel characteristics is investigated. Surface morphology, cross-section profile, and chemical composition are characterized by scanning electron microscope (SEM), confocal laser microscopy, and X-ray photoelectron spectroscopy (XPS). Results show that a series of phenomena such as melting, evaporation, flow, and resolidification occur during laser ablation, which lead to micro-channel structure and obvious heat-affected zone (HAZ) generated on the surface. Meanwhile, the laser parameters have significant effects on the micro-channel morphology by changing the surface energy accumulation. XPS results show that oxygen content increased and carbon content decreased after laser ablation, and a new aluminum-containing compound AlN was produced, which leads to the formation of partial cracks on the sample surface.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Study of Micro-channel in Al2O3by Nanosecond Laser Ablation
In this paper, a nanosecond pulse laser is used to fabricate micro-channels on the Al2O3surface, and the effect of laser parameters (power, scanning speed, and scanning times) on micro-channel characteristics is investigated. Surface morphology, cross-section profile, and chemical composition are characterized by scanning electron microscope (SEM), confocal laser microscopy, and X-ray photoelectron spectroscopy (XPS). Results show that a series of phenomena such as melting, evaporation, flow, and resolidification occur during laser ablation, which lead to micro-channel structure and obvious heat-affected zone (HAZ) generated on the surface. Meanwhile, the laser parameters have significant effects on the micro-channel morphology by changing the surface energy accumulation. XPS results show that oxygen content increased and carbon content decreased after laser ablation, and a new aluminum-containing compound AlN was produced, which leads to the formation of partial cracks on the sample surface.