{"title":"基于中断脑电图插值的监督式机器学习的情绪分析","authors":"H. Yaacob, H. Omar, D. Handayani, R. Hassan","doi":"10.19101/IJACR.PID17","DOIUrl":null,"url":null,"abstract":"It has been reported that the construction of emotion profiling models using supervised machine learning involves data acquisition, signal pre-processing, feature extraction and classification. However, almost all papers do not address the issue of profiling emotion using supervised machine learning on the interrupted encephalogram (EEG) signals. Based on a preliminary study, emotion profiling on interrupted EEG signals produces low classification accuracy, using multilayer perceptron (MLP). Furthermore, lower emotion classification accuracy is produced from interrupted EEG signals with higher number of segments. Thus, the objective of this paper is to propose a technique and present the outcomes of handling interrupted EEG signals for emotion profiling. This is done by the suppression and interpolation of originally interrupted EEG signals at pre-process stage. As a result, emotion classification using MLP on interpolated data improves","PeriodicalId":273530,"journal":{"name":"International Journal of Advanced Computer Research","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Emotional profiling through supervised machine learning of interrupted EEG interpolation\",\"authors\":\"H. Yaacob, H. Omar, D. Handayani, R. Hassan\",\"doi\":\"10.19101/IJACR.PID17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been reported that the construction of emotion profiling models using supervised machine learning involves data acquisition, signal pre-processing, feature extraction and classification. However, almost all papers do not address the issue of profiling emotion using supervised machine learning on the interrupted encephalogram (EEG) signals. Based on a preliminary study, emotion profiling on interrupted EEG signals produces low classification accuracy, using multilayer perceptron (MLP). Furthermore, lower emotion classification accuracy is produced from interrupted EEG signals with higher number of segments. Thus, the objective of this paper is to propose a technique and present the outcomes of handling interrupted EEG signals for emotion profiling. This is done by the suppression and interpolation of originally interrupted EEG signals at pre-process stage. As a result, emotion classification using MLP on interpolated data improves\",\"PeriodicalId\":273530,\"journal\":{\"name\":\"International Journal of Advanced Computer Research\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19101/IJACR.PID17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19101/IJACR.PID17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emotional profiling through supervised machine learning of interrupted EEG interpolation
It has been reported that the construction of emotion profiling models using supervised machine learning involves data acquisition, signal pre-processing, feature extraction and classification. However, almost all papers do not address the issue of profiling emotion using supervised machine learning on the interrupted encephalogram (EEG) signals. Based on a preliminary study, emotion profiling on interrupted EEG signals produces low classification accuracy, using multilayer perceptron (MLP). Furthermore, lower emotion classification accuracy is produced from interrupted EEG signals with higher number of segments. Thus, the objective of this paper is to propose a technique and present the outcomes of handling interrupted EEG signals for emotion profiling. This is done by the suppression and interpolation of originally interrupted EEG signals at pre-process stage. As a result, emotion classification using MLP on interpolated data improves