评估MapReduce对应用流量的分析

HPPN '13 Pub Date : 2013-06-18 DOI:10.1145/2465839.2465846
T. Vieira, S. Fernandes, V. Garcia
{"title":"评估MapReduce对应用流量的分析","authors":"T. Vieira, S. Fernandes, V. Garcia","doi":"10.1145/2465839.2465846","DOIUrl":null,"url":null,"abstract":"The use of MapReduce for distributed data processing has been growing and achieving benefits with its application for different workloads. MapReduce can be used for distributed traffic analysis, although network traces present characteristics which are not similar to the data type commonly processed through MapReduce. Motivated by the use of MapReduce for profiling application traffic and due to the lack of evaluation of MapReduce for network traffic analysis and the peculiarity of this kind of data, this paper evaluates the performance of MapReduce in packet level analysis and DPI, analysing its scalability, speed-up, and the behavior of MapReduce phases. The experiments provide evidences for the predominant phases in this kind of job, and show the impact of input size, block size and number of nodes, on MapReduce completion time and scalability.","PeriodicalId":212430,"journal":{"name":"HPPN '13","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evaluating MapReduce for profiling application traffic\",\"authors\":\"T. Vieira, S. Fernandes, V. Garcia\",\"doi\":\"10.1145/2465839.2465846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of MapReduce for distributed data processing has been growing and achieving benefits with its application for different workloads. MapReduce can be used for distributed traffic analysis, although network traces present characteristics which are not similar to the data type commonly processed through MapReduce. Motivated by the use of MapReduce for profiling application traffic and due to the lack of evaluation of MapReduce for network traffic analysis and the peculiarity of this kind of data, this paper evaluates the performance of MapReduce in packet level analysis and DPI, analysing its scalability, speed-up, and the behavior of MapReduce phases. The experiments provide evidences for the predominant phases in this kind of job, and show the impact of input size, block size and number of nodes, on MapReduce completion time and scalability.\",\"PeriodicalId\":212430,\"journal\":{\"name\":\"HPPN '13\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HPPN '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465839.2465846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HPPN '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465839.2465846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

MapReduce在分布式数据处理方面的使用一直在增长,并通过它的应用程序为不同的工作负载带来了好处。MapReduce可以用于分布式流量分析,尽管网络轨迹呈现的特征与MapReduce通常处理的数据类型不同。基于使用MapReduce分析应用流量的动机,由于缺乏对MapReduce进行网络流量分析的评估以及这类数据的特殊性,本文评估了MapReduce在数据包级分析和DPI方面的性能,分析了其可扩展性、加速和MapReduce阶段的行为。实验为这类任务的主要阶段提供了证据,并展示了输入大小、块大小和节点数量对MapReduce完成时间和可扩展性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating MapReduce for profiling application traffic
The use of MapReduce for distributed data processing has been growing and achieving benefits with its application for different workloads. MapReduce can be used for distributed traffic analysis, although network traces present characteristics which are not similar to the data type commonly processed through MapReduce. Motivated by the use of MapReduce for profiling application traffic and due to the lack of evaluation of MapReduce for network traffic analysis and the peculiarity of this kind of data, this paper evaluates the performance of MapReduce in packet level analysis and DPI, analysing its scalability, speed-up, and the behavior of MapReduce phases. The experiments provide evidences for the predominant phases in this kind of job, and show the impact of input size, block size and number of nodes, on MapReduce completion time and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-gigabit traffic identification on GPU From 1G to 10G: code reuse in action Flexible, extensible, open-source and affordable FPGA-based traffic generator Design and test of a software defined hybrid network architecture Implementation of TCP large receive offload on open hardware platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1