基于随机森林的智能鞋生物识别

Jeong-Kyun Kim, K. Lee, S. Hong
{"title":"基于随机森林的智能鞋生物识别","authors":"Jeong-Kyun Kim, K. Lee, S. Hong","doi":"10.1109/ICSENST.2017.8304518","DOIUrl":null,"url":null,"abstract":"This study presents a biometrie identification based on gait (with shoe wearable sensors). Biometrie identification is an excellent method to often alternate inconvenient interaction such as PIN and patterns in smart device. To help elderly person who cannot control smart devices by themselves, it is required to assist automatic personalization by identifying users sharing a device. In this study, we proposed an algorithm combined the discrete cosine transform for detecting frequency feature and random forest which classifies subjects. We performed an experiment for 8 subjects by walking with the smart shoes. Finally, the result demonstrates a user recognition accuracy of 97.9 % and an equal error rate of 2.4%.","PeriodicalId":289209,"journal":{"name":"2017 Eleventh International Conference on Sensing Technology (ICST)","volume":"75 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Random forest based-biometric identification using smart shoes\",\"authors\":\"Jeong-Kyun Kim, K. Lee, S. Hong\",\"doi\":\"10.1109/ICSENST.2017.8304518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a biometrie identification based on gait (with shoe wearable sensors). Biometrie identification is an excellent method to often alternate inconvenient interaction such as PIN and patterns in smart device. To help elderly person who cannot control smart devices by themselves, it is required to assist automatic personalization by identifying users sharing a device. In this study, we proposed an algorithm combined the discrete cosine transform for detecting frequency feature and random forest which classifies subjects. We performed an experiment for 8 subjects by walking with the smart shoes. Finally, the result demonstrates a user recognition accuracy of 97.9 % and an equal error rate of 2.4%.\",\"PeriodicalId\":289209,\"journal\":{\"name\":\"2017 Eleventh International Conference on Sensing Technology (ICST)\",\"volume\":\"75 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Eleventh International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2017.8304518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eleventh International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2017.8304518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究提出了一种基于步态的生物特征识别方法(利用鞋子可穿戴传感器)。在智能设备中,生物特征识别是一种很好的方法,可以经常替代不方便的交互,如PIN和模式。为了帮助不能自己控制智能设备的老年人,需要通过识别共享设备的用户来辅助自动个性化。在本研究中,我们提出了一种将离散余弦变换检测频率特征与随机森林分类相结合的算法。我们对8名受试者进行了穿着智能鞋行走的实验。结果表明,用户识别准确率为97.9%,错误率为2.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random forest based-biometric identification using smart shoes
This study presents a biometrie identification based on gait (with shoe wearable sensors). Biometrie identification is an excellent method to often alternate inconvenient interaction such as PIN and patterns in smart device. To help elderly person who cannot control smart devices by themselves, it is required to assist automatic personalization by identifying users sharing a device. In this study, we proposed an algorithm combined the discrete cosine transform for detecting frequency feature and random forest which classifies subjects. We performed an experiment for 8 subjects by walking with the smart shoes. Finally, the result demonstrates a user recognition accuracy of 97.9 % and an equal error rate of 2.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self adjustable daylight sensor for lighting systems Wheatstone bridge approach to the inspection of composite materials Demonstrator for online measurement of combustion gases NO, NO2 and SO2: A compact sensor system for highly resolved detection of hazardous emission gases Regeneratable surface acoustic wave (SAW) immunosensor for monitoring of physiological information Integration of an automatic agricultural and livestock production management system and an agriculture and food traceability system based on the Internet of Things technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1