吸力速度变化对流动分离控制的影响:流动特性、压力系数和阻力系数的研究

W. Rauf, R. Tarakka, Jalaluddin Jalaluddin, M. Ihsan
{"title":"吸力速度变化对流动分离控制的影响:流动特性、压力系数和阻力系数的研究","authors":"W. Rauf, R. Tarakka, Jalaluddin Jalaluddin, M. Ihsan","doi":"10.13189/ujme.2020.080302","DOIUrl":null,"url":null,"abstract":"Flow separation is expected to have the effect of increasing aerodynamic drag due to decreased pressure distribution at the rear of the vehicle. The faster the flow separation occurs, the lower the pressure distribution is in the area, thereby reducing vehicle performance. Therefore, flow modification is needed with expected effects on the separation delay and the reduction in wake and vortex formation. This modification can be done through the application of suction active control in the separation area. The research is intended to analyze the effect of suction active control on flow characteristics, pressure distribution and aerodynamic drag on vehicle models with suction velocity variations. The test model used is an Ahmed model modified by changing the orientation of the flow. The study used a numerical computational approach with a standard k-epsilon turbulence model at 19.4 m/s upstream velocity. Results revealed that the use of flow active control was able to reduce wake and vortex formation through separation delay and to increase the minimum pressure coefficient by 73% on the model with Usc2 suction velocity of 0.5 m/s, gaining the highest drag coefficient reduction of 10.897% in the same model.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of Flow Separation Control with Suction Velocity Variation: Study of Flow Characteristics, Pressure Coefficient, and Drag Coefficient\",\"authors\":\"W. Rauf, R. Tarakka, Jalaluddin Jalaluddin, M. Ihsan\",\"doi\":\"10.13189/ujme.2020.080302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow separation is expected to have the effect of increasing aerodynamic drag due to decreased pressure distribution at the rear of the vehicle. The faster the flow separation occurs, the lower the pressure distribution is in the area, thereby reducing vehicle performance. Therefore, flow modification is needed with expected effects on the separation delay and the reduction in wake and vortex formation. This modification can be done through the application of suction active control in the separation area. The research is intended to analyze the effect of suction active control on flow characteristics, pressure distribution and aerodynamic drag on vehicle models with suction velocity variations. The test model used is an Ahmed model modified by changing the orientation of the flow. The study used a numerical computational approach with a standard k-epsilon turbulence model at 19.4 m/s upstream velocity. Results revealed that the use of flow active control was able to reduce wake and vortex formation through separation delay and to increase the minimum pressure coefficient by 73% on the model with Usc2 suction velocity of 0.5 m/s, gaining the highest drag coefficient reduction of 10.897% in the same model.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujme.2020.080302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2020.080302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于车辆尾部压力分布的减少,预计流动分离会产生增加气动阻力的效果。流动分离越快,该区域的压力分布越低,从而降低了车辆的性能。因此,需要对流动进行修正,以达到预期的分离延迟和减少尾迹和涡形成的效果。这种改造可以通过在分离区应用吸力主动控制来实现。研究了吸力主动控制对具有吸力速度变化的车辆模型的流动特性、压力分布和气动阻力的影响。使用的测试模型是通过改变流的方向修改的Ahmed模型。该研究采用了标准k-epsilon湍流模型的数值计算方法,上游速度为19.4 m/s。结果表明,在Usc2吸力速度为0.5 m/s的模型上,采用流动主动控制可以通过分离延迟减少尾迹和涡的形成,使最小压力系数提高73%,阻力系数降低幅度最大,达到10.897%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Flow Separation Control with Suction Velocity Variation: Study of Flow Characteristics, Pressure Coefficient, and Drag Coefficient
Flow separation is expected to have the effect of increasing aerodynamic drag due to decreased pressure distribution at the rear of the vehicle. The faster the flow separation occurs, the lower the pressure distribution is in the area, thereby reducing vehicle performance. Therefore, flow modification is needed with expected effects on the separation delay and the reduction in wake and vortex formation. This modification can be done through the application of suction active control in the separation area. The research is intended to analyze the effect of suction active control on flow characteristics, pressure distribution and aerodynamic drag on vehicle models with suction velocity variations. The test model used is an Ahmed model modified by changing the orientation of the flow. The study used a numerical computational approach with a standard k-epsilon turbulence model at 19.4 m/s upstream velocity. Results revealed that the use of flow active control was able to reduce wake and vortex formation through separation delay and to increase the minimum pressure coefficient by 73% on the model with Usc2 suction velocity of 0.5 m/s, gaining the highest drag coefficient reduction of 10.897% in the same model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer in a HfB2 Microchannel Heat Sink: A Numerical Approach Design and Implementation of Highly Robust Gantry-Type and Low-Cost 3D Concrete Printer for Construction Estimating Tire Forces Using MLP Neural Network and LM Algorithm: A Comparative Study Optimization of Quarter Car Suspension Dynamics Using Power Spectral Density of Irregular Road Profile CAD Modelling and Fatigue Analysis of a Wheel Rim Incorporating Finite Element Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1