分析机器学习方法,确定糖尿病预测的最佳数据分析方法

Nondumiso Sihlangu, R. Millham
{"title":"分析机器学习方法,确定糖尿病预测的最佳数据分析方法","authors":"Nondumiso Sihlangu, R. Millham","doi":"10.1109/ICTAS56421.2023.10082727","DOIUrl":null,"url":null,"abstract":"Chronic diabetes results from the body's inability to produce adequate insulin. It is an incurable but treatable disease. The experiment conducted in this study aims to analyze different machine learning methods like Stochastic Gradient Descent, Support Vector Machine, Logistic Regression, and CN2 Rule using the Orange data mining software and use them for diabetes prediction based on the PIMA Indian Diabetes Dataset. Utilizing different performance criteria like Accuracy, Precision, Recall, and F1-Score, these approaches were examined and evaluated. The best outcome was obtained by CN2 Rule Induction, achieving an accuracy score of 80.7% which shows that this method is the most suitable for diabetes prediction compared to the other three models.","PeriodicalId":158720,"journal":{"name":"2023 Conference on Information Communications Technology and Society (ICTAS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of machine learning methods to determine the best data analysis method for diabetes prediction\",\"authors\":\"Nondumiso Sihlangu, R. Millham\",\"doi\":\"10.1109/ICTAS56421.2023.10082727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic diabetes results from the body's inability to produce adequate insulin. It is an incurable but treatable disease. The experiment conducted in this study aims to analyze different machine learning methods like Stochastic Gradient Descent, Support Vector Machine, Logistic Regression, and CN2 Rule using the Orange data mining software and use them for diabetes prediction based on the PIMA Indian Diabetes Dataset. Utilizing different performance criteria like Accuracy, Precision, Recall, and F1-Score, these approaches were examined and evaluated. The best outcome was obtained by CN2 Rule Induction, achieving an accuracy score of 80.7% which shows that this method is the most suitable for diabetes prediction compared to the other three models.\",\"PeriodicalId\":158720,\"journal\":{\"name\":\"2023 Conference on Information Communications Technology and Society (ICTAS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Conference on Information Communications Technology and Society (ICTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAS56421.2023.10082727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Conference on Information Communications Technology and Society (ICTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAS56421.2023.10082727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

慢性糖尿病是由身体不能产生足够的胰岛素引起的。这是一种不治之症,但可以治疗。本实验旨在利用Orange数据挖掘软件分析随机梯度下降、支持向量机、逻辑回归和CN2规则等不同的机器学习方法,并将其用于基于PIMA印度糖尿病数据集的糖尿病预测。利用不同的性能标准,如准确性、精度、召回率和F1-Score,对这些方法进行了检查和评估。CN2规则归纳法的预测结果最好,准确率达到80.7%,与其他三种模型相比,该方法最适合糖尿病预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of machine learning methods to determine the best data analysis method for diabetes prediction
Chronic diabetes results from the body's inability to produce adequate insulin. It is an incurable but treatable disease. The experiment conducted in this study aims to analyze different machine learning methods like Stochastic Gradient Descent, Support Vector Machine, Logistic Regression, and CN2 Rule using the Orange data mining software and use them for diabetes prediction based on the PIMA Indian Diabetes Dataset. Utilizing different performance criteria like Accuracy, Precision, Recall, and F1-Score, these approaches were examined and evaluated. The best outcome was obtained by CN2 Rule Induction, achieving an accuracy score of 80.7% which shows that this method is the most suitable for diabetes prediction compared to the other three models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of anxiety on students' behavioural intention to use business simulation games Biometric Recognition of Infants Using Fingerprints: Can the infant fingerprint be used for secure authentication? A study on farmers' perceptions about the scope of the Kisan Suvidha App in improving agricultural sustainability Enhancing Traffic Simulations Analysis Efficacy using Multiperspective Heterogeneous Toolset Implementation of ensemble machine learning classifiers to predict diarrhoea with SMOTEENN, SMOTE, and SMOTETomek class imbalance approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1