零膨胀计数数据重复测量的随机效应模型

Yongyi Min, A. Agresti
{"title":"零膨胀计数数据重复测量的随机效应模型","authors":"Yongyi Min, A. Agresti","doi":"10.1191/1471082X05st084oa","DOIUrl":null,"url":null,"abstract":"For count responses, the situation of excess zeros (relative to what standard models allow) often occurs in biomedical and sociological applications. Modeling repeated measures of zero-inflated count data presents special challenges. This is because in addition to the problem of extra zeros, the correlation between measurements upon the same subject at different occasions needs to be taken into account. This article discusses random effect models for repeated measurements on this type of response variable. A useful model is the hurdle model with random effects, which separately handles the zero observations and the positive counts. In maximum likelihood model fitting, we consider both a normal distribution and a nonparametric approach for the random effects. A special case of the hurdle model can be used to test for zero inflation. Random effects can also be introduced in a zero-inflated Poisson or negative binomial model, but such a model may encounter fitting problems if there is zero deflation at any settings of the explanatory variables. A simple alternative approach adapts the cumulative logit model with random effects, which has a single set of parameters for describing effects. We illustrate the proposed methods with examples.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"351","resultStr":"{\"title\":\"Random effect models for repeated measures of zero-inflated count data\",\"authors\":\"Yongyi Min, A. Agresti\",\"doi\":\"10.1191/1471082X05st084oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For count responses, the situation of excess zeros (relative to what standard models allow) often occurs in biomedical and sociological applications. Modeling repeated measures of zero-inflated count data presents special challenges. This is because in addition to the problem of extra zeros, the correlation between measurements upon the same subject at different occasions needs to be taken into account. This article discusses random effect models for repeated measurements on this type of response variable. A useful model is the hurdle model with random effects, which separately handles the zero observations and the positive counts. In maximum likelihood model fitting, we consider both a normal distribution and a nonparametric approach for the random effects. A special case of the hurdle model can be used to test for zero inflation. Random effects can also be introduced in a zero-inflated Poisson or negative binomial model, but such a model may encounter fitting problems if there is zero deflation at any settings of the explanatory variables. A simple alternative approach adapts the cumulative logit model with random effects, which has a single set of parameters for describing effects. We illustrate the proposed methods with examples.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"351\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X05st084oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X05st084oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 351

摘要

对于计数响应,在生物医学和社会学应用中经常出现超过零的情况(相对于标准模型允许的情况)。对零膨胀计数数据的重复测量建模提出了特殊的挑战。这是因为除了额外零的问题外,还需要考虑在不同场合对同一主题的测量之间的相关性。本文讨论了对这类响应变量进行重复测量的随机效应模型。一个有用的模型是具有随机效应的障碍模型,它分别处理零观测值和正计数。在最大似然模型拟合中,我们同时考虑正态分布和随机效应的非参数方法。障碍模型的一个特例可以用来测试零通货膨胀。在零膨胀泊松模型或负二项模型中也可以引入随机效应,但如果在任何解释变量的设置下都存在零通货紧缩,则这种模型可能会遇到拟合问题。一种简单的替代方法将累积logit模型与随机效应相适应,该模型具有一组用于描述效应的参数。我们用实例来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random effect models for repeated measures of zero-inflated count data
For count responses, the situation of excess zeros (relative to what standard models allow) often occurs in biomedical and sociological applications. Modeling repeated measures of zero-inflated count data presents special challenges. This is because in addition to the problem of extra zeros, the correlation between measurements upon the same subject at different occasions needs to be taken into account. This article discusses random effect models for repeated measurements on this type of response variable. A useful model is the hurdle model with random effects, which separately handles the zero observations and the positive counts. In maximum likelihood model fitting, we consider both a normal distribution and a nonparametric approach for the random effects. A special case of the hurdle model can be used to test for zero inflation. Random effects can also be introduced in a zero-inflated Poisson or negative binomial model, but such a model may encounter fitting problems if there is zero deflation at any settings of the explanatory variables. A simple alternative approach adapts the cumulative logit model with random effects, which has a single set of parameters for describing effects. We illustrate the proposed methods with examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1