一种基于混合深度学习框架的谷物类型检测方法

Rahul Nijhawan, M. Ashish, Arpit Ahuja, Naveen Yadav
{"title":"一种基于混合深度学习框架的谷物类型检测方法","authors":"Rahul Nijhawan, M. Ashish, Arpit Ahuja, Naveen Yadav","doi":"10.1109/SMART52563.2021.9676325","DOIUrl":null,"url":null,"abstract":"This study was conducted for the detection of the types of grain which germinate in India. Every class of grain has different and unique kind of proteins, carbohydrates and nutrients. The utilization of grains highly depends on their type. The main motive of the pabulum industry today is to fulfil the consumers’ demand. We propose a hybrid deep learning framework composed of the ensemble of CNNs for feature extraction and an integrated Random Forest model for classification. A distinct type of 13 grain types have been classified—Chickpeas, Lentils, Peanuts, Soybeans, Fava Beans, Finger Millets, Fonio, Japanese Millet, Kodo Millet, Barley, Oats, Rice and Wheat. Our proposed framework outperformed (classification accuracy 96.12%) the state of art algorithms for detection of grain types. Index Terms—— Grain, SVM (Support Vector Machine), Deep Learning, CNN (Convolution neural network), RF (Random Forest), KNN (K-Nearest Neighbor).","PeriodicalId":356096,"journal":{"name":"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Deep Learning Framework Approach for the Detection of Different Varieties of Grain Types\",\"authors\":\"Rahul Nijhawan, M. Ashish, Arpit Ahuja, Naveen Yadav\",\"doi\":\"10.1109/SMART52563.2021.9676325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was conducted for the detection of the types of grain which germinate in India. Every class of grain has different and unique kind of proteins, carbohydrates and nutrients. The utilization of grains highly depends on their type. The main motive of the pabulum industry today is to fulfil the consumers’ demand. We propose a hybrid deep learning framework composed of the ensemble of CNNs for feature extraction and an integrated Random Forest model for classification. A distinct type of 13 grain types have been classified—Chickpeas, Lentils, Peanuts, Soybeans, Fava Beans, Finger Millets, Fonio, Japanese Millet, Kodo Millet, Barley, Oats, Rice and Wheat. Our proposed framework outperformed (classification accuracy 96.12%) the state of art algorithms for detection of grain types. Index Terms—— Grain, SVM (Support Vector Machine), Deep Learning, CNN (Convolution neural network), RF (Random Forest), KNN (K-Nearest Neighbor).\",\"PeriodicalId\":356096,\"journal\":{\"name\":\"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMART52563.2021.9676325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART52563.2021.9676325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究是为了检测在印度发芽的谷物类型而进行的。每一类谷物都有不同的、独特的蛋白质、碳水化合物和营养素。粮食的利用在很大程度上取决于其类型。如今,泡腾业的主要动机是满足消费者的需求。我们提出了一种混合深度学习框架,该框架由用于特征提取的cnn集成和用于分类的集成随机森林模型组成。一种独特的13种谷物类型被分类为鹰嘴豆、扁豆、花生、大豆、蚕豆、指粟、丰io、日本小米、Kodo小米、大麦、燕麦、大米和小麦。我们提出的框架优于当前最先进的谷物类型检测算法(分类准确率为96.12%)。索引术语——谷物、支持向量机(SVM)、深度学习、卷积神经网络(CNN)、随机森林(RF)、k近邻(KNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Deep Learning Framework Approach for the Detection of Different Varieties of Grain Types
This study was conducted for the detection of the types of grain which germinate in India. Every class of grain has different and unique kind of proteins, carbohydrates and nutrients. The utilization of grains highly depends on their type. The main motive of the pabulum industry today is to fulfil the consumers’ demand. We propose a hybrid deep learning framework composed of the ensemble of CNNs for feature extraction and an integrated Random Forest model for classification. A distinct type of 13 grain types have been classified—Chickpeas, Lentils, Peanuts, Soybeans, Fava Beans, Finger Millets, Fonio, Japanese Millet, Kodo Millet, Barley, Oats, Rice and Wheat. Our proposed framework outperformed (classification accuracy 96.12%) the state of art algorithms for detection of grain types. Index Terms—— Grain, SVM (Support Vector Machine), Deep Learning, CNN (Convolution neural network), RF (Random Forest), KNN (K-Nearest Neighbor).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Decision Tree Classification (IDT) Algorithm for Social Media Data [Front matter] Object-Text Detection and Recognition System A Review on Organic Cotton: Various Challenges, Issues and Application for Smart Agriculture Machine Learning Methods for Predictive Analytics in Health Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1