Kate D. Fischl, Adam B. Cellon, T. Stewart, T. Horiuchi, A. Andreou
{"title":"具有分布式多平台神经形态处理的社会情感机器人:(特邀报告)","authors":"Kate D. Fischl, Adam B. Cellon, T. Stewart, T. Horiuchi, A. Andreou","doi":"10.1109/CISS.2019.8692945","DOIUrl":null,"url":null,"abstract":"Social robotics is a highly useful field that is rapidly growing. Advances in embedded systems and fields like neuromorphic computing provide hardware solutions for the computationally complex models needed to produce realistic, pro-social socio-emotional robots. This work details a robot which executes a simplified amygdala model to determine an emotional state from visual input and a subsequent behavioral response. Each nuclei of this model is processed on a different neuromorphic platform, including the SpiNNaker, Loihi, and Braindrop chips. Although simplified, this robot and its underlying model illustrate a proof of concept for more complicated and biologically-plausible socio-emotional robots.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Socio-Emotional Robot with Distributed Multi-Platform Neuromorphic Processing : (Invited Presentation)\",\"authors\":\"Kate D. Fischl, Adam B. Cellon, T. Stewart, T. Horiuchi, A. Andreou\",\"doi\":\"10.1109/CISS.2019.8692945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social robotics is a highly useful field that is rapidly growing. Advances in embedded systems and fields like neuromorphic computing provide hardware solutions for the computationally complex models needed to produce realistic, pro-social socio-emotional robots. This work details a robot which executes a simplified amygdala model to determine an emotional state from visual input and a subsequent behavioral response. Each nuclei of this model is processed on a different neuromorphic platform, including the SpiNNaker, Loihi, and Braindrop chips. Although simplified, this robot and its underlying model illustrate a proof of concept for more complicated and biologically-plausible socio-emotional robots.\",\"PeriodicalId\":123696,\"journal\":{\"name\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2019.8692945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Socio-Emotional Robot with Distributed Multi-Platform Neuromorphic Processing : (Invited Presentation)
Social robotics is a highly useful field that is rapidly growing. Advances in embedded systems and fields like neuromorphic computing provide hardware solutions for the computationally complex models needed to produce realistic, pro-social socio-emotional robots. This work details a robot which executes a simplified amygdala model to determine an emotional state from visual input and a subsequent behavioral response. Each nuclei of this model is processed on a different neuromorphic platform, including the SpiNNaker, Loihi, and Braindrop chips. Although simplified, this robot and its underlying model illustrate a proof of concept for more complicated and biologically-plausible socio-emotional robots.