Ștefan-Dan Ciocîrlan, Dumitrel Loghin, Lavanya Ramapantulu, N. Tapus, Y. M. Teo
{"title":"正数算法的精度和效率","authors":"Ștefan-Dan Ciocîrlan, Dumitrel Loghin, Lavanya Ramapantulu, N. Tapus, Y. M. Teo","doi":"10.1109/ICCD53106.2021.00024","DOIUrl":null,"url":null,"abstract":"Motivated by the increasing interest in the posit numeric format, in this paper we evaluate the accuracy and efficiency of posit arithmetic in contrast to the traditional IEEE 754 32-bit floating-point (FP32) arithmetic. We first design and implement a Posit Arithmetic Unit (PAU), called POSAR, with flexible bit-sized arithmetic suitable for applications that can trade accuracy for savings in chip area. Next, we analyze the accuracy and efficiency of POSAR with a series of benchmarks including mathematical computations, ML kernels, NAS Parallel Benchmarks (NPB), and Cifar-10 CNN. This analysis is done on our implementation of POSAR integrated into a RISC-V Rocket Chip core in comparison with the IEEE 754-based Floting Point Unit (FPU) of Rocket Chip. Our analysis shows that POSAR can outperform the FPU, but the results are not spectacular. For NPB, 32-bit posit achieves better accuracy than FP32 and improves the execution by up to 2%. However, POSAR with 32-bit posit needs 30% more FPGA resources compared to the FPU. For classic ML algorithms, we find that 8-bit posits are not suitable to replace FP32 because they exhibit low accuracy leading to wrong results. Instead, 16-bit posit offers the best option in terms of accuracy and efficiency. For example, 16-bit posit achieves the same Top-1 accuracy as FP32 on a Cifar-10 CNN with a speedup of 18%.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Accuracy and Efficiency of Posit Arithmetic\",\"authors\":\"Ștefan-Dan Ciocîrlan, Dumitrel Loghin, Lavanya Ramapantulu, N. Tapus, Y. M. Teo\",\"doi\":\"10.1109/ICCD53106.2021.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the increasing interest in the posit numeric format, in this paper we evaluate the accuracy and efficiency of posit arithmetic in contrast to the traditional IEEE 754 32-bit floating-point (FP32) arithmetic. We first design and implement a Posit Arithmetic Unit (PAU), called POSAR, with flexible bit-sized arithmetic suitable for applications that can trade accuracy for savings in chip area. Next, we analyze the accuracy and efficiency of POSAR with a series of benchmarks including mathematical computations, ML kernels, NAS Parallel Benchmarks (NPB), and Cifar-10 CNN. This analysis is done on our implementation of POSAR integrated into a RISC-V Rocket Chip core in comparison with the IEEE 754-based Floting Point Unit (FPU) of Rocket Chip. Our analysis shows that POSAR can outperform the FPU, but the results are not spectacular. For NPB, 32-bit posit achieves better accuracy than FP32 and improves the execution by up to 2%. However, POSAR with 32-bit posit needs 30% more FPGA resources compared to the FPU. For classic ML algorithms, we find that 8-bit posits are not suitable to replace FP32 because they exhibit low accuracy leading to wrong results. Instead, 16-bit posit offers the best option in terms of accuracy and efficiency. For example, 16-bit posit achieves the same Top-1 accuracy as FP32 on a Cifar-10 CNN with a speedup of 18%.\",\"PeriodicalId\":154014,\"journal\":{\"name\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD53106.2021.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motivated by the increasing interest in the posit numeric format, in this paper we evaluate the accuracy and efficiency of posit arithmetic in contrast to the traditional IEEE 754 32-bit floating-point (FP32) arithmetic. We first design and implement a Posit Arithmetic Unit (PAU), called POSAR, with flexible bit-sized arithmetic suitable for applications that can trade accuracy for savings in chip area. Next, we analyze the accuracy and efficiency of POSAR with a series of benchmarks including mathematical computations, ML kernels, NAS Parallel Benchmarks (NPB), and Cifar-10 CNN. This analysis is done on our implementation of POSAR integrated into a RISC-V Rocket Chip core in comparison with the IEEE 754-based Floting Point Unit (FPU) of Rocket Chip. Our analysis shows that POSAR can outperform the FPU, but the results are not spectacular. For NPB, 32-bit posit achieves better accuracy than FP32 and improves the execution by up to 2%. However, POSAR with 32-bit posit needs 30% more FPGA resources compared to the FPU. For classic ML algorithms, we find that 8-bit posits are not suitable to replace FP32 because they exhibit low accuracy leading to wrong results. Instead, 16-bit posit offers the best option in terms of accuracy and efficiency. For example, 16-bit posit achieves the same Top-1 accuracy as FP32 on a Cifar-10 CNN with a speedup of 18%.