内存层次中能量测量和建模的框架

I. Manousakis, Dimitrios S. Nikolopoulos
{"title":"内存层次中能量测量和建模的框架","authors":"I. Manousakis, Dimitrios S. Nikolopoulos","doi":"10.1109/SBAC-PAD.2012.38","DOIUrl":null,"url":null,"abstract":"Understanding the energy efficiency of computing systems is paramount. Although processors remain dominant energy consumers and the focal target of energy-aware optimization in computing systems, the memory subsystem dissipates substantial amounts of power, which at high densities may exceed50% of total system power. The failure of DRAM to keep up with increasing processor speeds, creates a two-pronged bottleneck for overall system energy efficiency. This paper presents a high-performance, autonomic power instrumentation setup to measure energy consumption in computing systems and accurately attribute energy to processors and components of the memory hierarchy. We provide a set of carefully engineered micro benchmarks that reveal the energy efficiency under different memory access patterns and stress the importance of minimizing costly data transfers that involve multiple levels of the system's memory hierarchy. Lastly, we present BTL (Bottom line), a processor specific model for deriving lower bounds of energy consumption. BTL predicts the minimum dynamic energy consumption for any workload, thus uncovering opportunities for energy optimization.","PeriodicalId":232444,"journal":{"name":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"BTL: A Framework for Measuring and Modeling Energy in Memory Hierarchies\",\"authors\":\"I. Manousakis, Dimitrios S. Nikolopoulos\",\"doi\":\"10.1109/SBAC-PAD.2012.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the energy efficiency of computing systems is paramount. Although processors remain dominant energy consumers and the focal target of energy-aware optimization in computing systems, the memory subsystem dissipates substantial amounts of power, which at high densities may exceed50% of total system power. The failure of DRAM to keep up with increasing processor speeds, creates a two-pronged bottleneck for overall system energy efficiency. This paper presents a high-performance, autonomic power instrumentation setup to measure energy consumption in computing systems and accurately attribute energy to processors and components of the memory hierarchy. We provide a set of carefully engineered micro benchmarks that reveal the energy efficiency under different memory access patterns and stress the importance of minimizing costly data transfers that involve multiple levels of the system's memory hierarchy. Lastly, we present BTL (Bottom line), a processor specific model for deriving lower bounds of energy consumption. BTL predicts the minimum dynamic energy consumption for any workload, thus uncovering opportunities for energy optimization.\",\"PeriodicalId\":232444,\"journal\":{\"name\":\"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2012.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2012.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

了解计算系统的能源效率是至关重要的。尽管处理器仍然是主要的能源消耗者和计算系统中能源感知优化的焦点目标,但内存子系统消耗了大量的功率,在高密度时可能超过系统总功率的50%。DRAM无法跟上不断增长的处理器速度,会给整个系统的能源效率造成双重瓶颈。本文提出了一种高性能、自主的功率测量装置,用于测量计算系统中的能量消耗,并准确地将能量分配给处理器和内存层次结构的组件。我们提供了一组精心设计的微基准测试,揭示了不同内存访问模式下的能源效率,并强调了最小化涉及系统内存层次结构多个级别的昂贵数据传输的重要性。最后,我们提出了BTL(底线),这是一个特定于处理器的模型,用于推导能量消耗的下界。BTL预测任何工作负载的最小动态能耗,从而发现能源优化的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BTL: A Framework for Measuring and Modeling Energy in Memory Hierarchies
Understanding the energy efficiency of computing systems is paramount. Although processors remain dominant energy consumers and the focal target of energy-aware optimization in computing systems, the memory subsystem dissipates substantial amounts of power, which at high densities may exceed50% of total system power. The failure of DRAM to keep up with increasing processor speeds, creates a two-pronged bottleneck for overall system energy efficiency. This paper presents a high-performance, autonomic power instrumentation setup to measure energy consumption in computing systems and accurately attribute energy to processors and components of the memory hierarchy. We provide a set of carefully engineered micro benchmarks that reveal the energy efficiency under different memory access patterns and stress the importance of minimizing costly data transfers that involve multiple levels of the system's memory hierarchy. Lastly, we present BTL (Bottom line), a processor specific model for deriving lower bounds of energy consumption. BTL predicts the minimum dynamic energy consumption for any workload, thus uncovering opportunities for energy optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Heterogeneous Networks to Improve Energy Efficiency in Direct Coherence Protocols for Many-Core CMPs Cloud Workload Analysis with SWAT Energy-Performance Tradeoffs in Software Transactional Memory CSHARP: Coherence and SHaring Aware Cache Replacement Policies for Parallel Applications Exploiting Concurrent GPU Operations for Efficient Work Stealing on Multi-GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1