基于离散元法的金属增材制造参数分析的人工神经网络

Yuxuan Wu, S. Namilae
{"title":"基于离散元法的金属增材制造参数分析的人工神经网络","authors":"Yuxuan Wu, S. Namilae","doi":"10.1115/imece2022-95117","DOIUrl":null,"url":null,"abstract":"\n Powder bed fusion (PBF) is a widely used metal additive manufacturing method. There is strong evidence that the performance of the final part built using PBF depends on the dispersive quality of the particle bed. Understanding this process through computational modeling and machine learning is an efficient low-cost way for process design. Discrete element method (DEM) is an effective tool for analyzing the particle flow behavior. However, one challenge for parametric modeling of highly multivariate powder spreading process through DEM is the high computational cost, for traversing the large parameter space. We address this problem through innovative use of parallel computing using GNU parallel, and by developing a machine learning algorithm to correlate the process parameters and spread quality. We first perform DEM simulations systematically varying four parameters, the particle size, the coefficient of friction, the spread layer thickness, and the recoating velocity. The dataset containing inputs with spread parameters and target variables that measure the spread quality are fed to a finely-tuned artificial neural network (ANN). We observe that the neural network presents at least 95% accuracy in predicting the test data. Ultimately this approach provides the parameter combinations that produce high quality compaction before sintering.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Artificial Neural Network for Parametric Analysis of Metallic Additive Manufacturing Using Discrete Element Method\",\"authors\":\"Yuxuan Wu, S. Namilae\",\"doi\":\"10.1115/imece2022-95117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Powder bed fusion (PBF) is a widely used metal additive manufacturing method. There is strong evidence that the performance of the final part built using PBF depends on the dispersive quality of the particle bed. Understanding this process through computational modeling and machine learning is an efficient low-cost way for process design. Discrete element method (DEM) is an effective tool for analyzing the particle flow behavior. However, one challenge for parametric modeling of highly multivariate powder spreading process through DEM is the high computational cost, for traversing the large parameter space. We address this problem through innovative use of parallel computing using GNU parallel, and by developing a machine learning algorithm to correlate the process parameters and spread quality. We first perform DEM simulations systematically varying four parameters, the particle size, the coefficient of friction, the spread layer thickness, and the recoating velocity. The dataset containing inputs with spread parameters and target variables that measure the spread quality are fed to a finely-tuned artificial neural network (ANN). We observe that the neural network presents at least 95% accuracy in predicting the test data. Ultimately this approach provides the parameter combinations that produce high quality compaction before sintering.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粉末床熔融(PBF)是一种应用广泛的金属增材制造方法。有强有力的证据表明,使用PBF建造的最终部件的性能取决于颗粒床的分散质量。通过计算建模和机器学习来理解这一过程是一种高效、低成本的工艺设计方法。离散元法(DEM)是分析颗粒流动特性的有效工具。然而,通过DEM对高多元粉末扩散过程进行参数化建模的一个挑战是遍历大的参数空间,计算成本高。我们通过创新性地使用GNU并行计算来解决这个问题,并通过开发一种机器学习算法来关联过程参数和传播质量。我们首先系统地进行了DEM模拟,改变了四个参数,粒径,摩擦系数,涂覆层厚度和重涂速度。该数据集包含具有传播参数的输入和测量传播质量的目标变量,并被馈送到一个微调的人工神经网络(ANN)。我们观察到,神经网络在预测测试数据方面的准确率至少为95%。最终,这种方法提供了在烧结前产生高质量压实的参数组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Artificial Neural Network for Parametric Analysis of Metallic Additive Manufacturing Using Discrete Element Method
Powder bed fusion (PBF) is a widely used metal additive manufacturing method. There is strong evidence that the performance of the final part built using PBF depends on the dispersive quality of the particle bed. Understanding this process through computational modeling and machine learning is an efficient low-cost way for process design. Discrete element method (DEM) is an effective tool for analyzing the particle flow behavior. However, one challenge for parametric modeling of highly multivariate powder spreading process through DEM is the high computational cost, for traversing the large parameter space. We address this problem through innovative use of parallel computing using GNU parallel, and by developing a machine learning algorithm to correlate the process parameters and spread quality. We first perform DEM simulations systematically varying four parameters, the particle size, the coefficient of friction, the spread layer thickness, and the recoating velocity. The dataset containing inputs with spread parameters and target variables that measure the spread quality are fed to a finely-tuned artificial neural network (ANN). We observe that the neural network presents at least 95% accuracy in predicting the test data. Ultimately this approach provides the parameter combinations that produce high quality compaction before sintering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1