基于深度学习的肌电信号分类

Mekia Shigute Gaso, S. Cankurt, A. Subasi
{"title":"基于深度学习的肌电信号分类","authors":"Mekia Shigute Gaso, S. Cankurt, A. Subasi","doi":"10.1109/ICECCO53203.2021.9663803","DOIUrl":null,"url":null,"abstract":"We have implemented a deep learning model with L2 regularization and trained it on Electromyography (EMG) data. The data comprises of EMG signals collected from control group, myopathy and ALS patients. Our proposed deep neural network consists of eight layers; five fully connected, two batch normalization and one dropout layers. The data is divided into training and testing sections by subsequently dividing the training data into sub-training and validation sections. Having implemented this model, an accuracy of 99 percent is achieved on the test data set. The model was able to distinguishes the normal cases (control group) from the others at a precision of 100 percent and classify the myopathy and ALS with high accuracy of 97.4 and 98.2 percents, respectively. Thus we believe that, this highly improved classification accuracies will be beneficial for their use in the clinical diagnosis of neuromuscular disorders.","PeriodicalId":331369,"journal":{"name":"2021 16th International Conference on Electronics Computer and Computation (ICECCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electromyography Signal Classification Using Deep Learning\",\"authors\":\"Mekia Shigute Gaso, S. Cankurt, A. Subasi\",\"doi\":\"10.1109/ICECCO53203.2021.9663803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have implemented a deep learning model with L2 regularization and trained it on Electromyography (EMG) data. The data comprises of EMG signals collected from control group, myopathy and ALS patients. Our proposed deep neural network consists of eight layers; five fully connected, two batch normalization and one dropout layers. The data is divided into training and testing sections by subsequently dividing the training data into sub-training and validation sections. Having implemented this model, an accuracy of 99 percent is achieved on the test data set. The model was able to distinguishes the normal cases (control group) from the others at a precision of 100 percent and classify the myopathy and ALS with high accuracy of 97.4 and 98.2 percents, respectively. Thus we believe that, this highly improved classification accuracies will be beneficial for their use in the clinical diagnosis of neuromuscular disorders.\",\"PeriodicalId\":331369,\"journal\":{\"name\":\"2021 16th International Conference on Electronics Computer and Computation (ICECCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 16th International Conference on Electronics Computer and Computation (ICECCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCO53203.2021.9663803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Conference on Electronics Computer and Computation (ICECCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCO53203.2021.9663803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们实现了一个具有L2正则化的深度学习模型,并在肌电图(EMG)数据上进行了训练。数据包括对照组、肌病患者和肌萎缩侧索硬化症患者的肌电信号。我们提出的深度神经网络由八层组成;五个完全连接,两个批规范化和一个dropout层。通过将训练数据分成子训练和验证部分,将数据分成训练和测试部分。在实现了这个模型之后,测试数据集的准确率达到了99%。该模型能够以100%的准确率区分正常病例(对照组),并以97.4%和98.2%的准确率对肌病和ALS进行分类。因此,我们相信,这种高度提高的分类准确性将有利于它们在神经肌肉疾病的临床诊断中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electromyography Signal Classification Using Deep Learning
We have implemented a deep learning model with L2 regularization and trained it on Electromyography (EMG) data. The data comprises of EMG signals collected from control group, myopathy and ALS patients. Our proposed deep neural network consists of eight layers; five fully connected, two batch normalization and one dropout layers. The data is divided into training and testing sections by subsequently dividing the training data into sub-training and validation sections. Having implemented this model, an accuracy of 99 percent is achieved on the test data set. The model was able to distinguishes the normal cases (control group) from the others at a precision of 100 percent and classify the myopathy and ALS with high accuracy of 97.4 and 98.2 percents, respectively. Thus we believe that, this highly improved classification accuracies will be beneficial for their use in the clinical diagnosis of neuromuscular disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Question answering model construction by using transfer learning Breast cancer histopathology image classification using CNN MBTI personality classification using Apache Spark ICECCO 2021 Table of contents Part-of-speech tagging of Kazakh text via LSTM network with a bidirectional modifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1