Sudarsun Kannan, Ada Gavrilovska, K. Schwan, Sanjay Kumar
{"title":"用于加速基于浏览器的应用程序的NVM堆","authors":"Sudarsun Kannan, Ada Gavrilovska, K. Schwan, Sanjay Kumar","doi":"10.1145/2527792.2527796","DOIUrl":null,"url":null,"abstract":"The growth in browser-based computations is raising the need for efficient local storage for browser-based applications. A standard approach to control how such applications access and manipulate the underlying platform resources, is to run in-browser applications in a sandbox environment. Sandboxing works by static code analysis and system call interception, and as a result, the performance of browser applications making frequent I/O calls can be severely impacted. To address this, we explore the utility of next generation non-volatile memories (NVM) in client platforms. By using NVM as virtual memory, and integrating NVM support for browser applications with byte-addressable I/O interfaces, our approach shows up to 3.5x reduction in sandboxing cost and around 3x reduction in serialization overheads for browser-based applications, and improved application performance.","PeriodicalId":404573,"journal":{"name":"INFLOW '13","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NVM heaps for accelerating browser-based applications\",\"authors\":\"Sudarsun Kannan, Ada Gavrilovska, K. Schwan, Sanjay Kumar\",\"doi\":\"10.1145/2527792.2527796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth in browser-based computations is raising the need for efficient local storage for browser-based applications. A standard approach to control how such applications access and manipulate the underlying platform resources, is to run in-browser applications in a sandbox environment. Sandboxing works by static code analysis and system call interception, and as a result, the performance of browser applications making frequent I/O calls can be severely impacted. To address this, we explore the utility of next generation non-volatile memories (NVM) in client platforms. By using NVM as virtual memory, and integrating NVM support for browser applications with byte-addressable I/O interfaces, our approach shows up to 3.5x reduction in sandboxing cost and around 3x reduction in serialization overheads for browser-based applications, and improved application performance.\",\"PeriodicalId\":404573,\"journal\":{\"name\":\"INFLOW '13\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFLOW '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2527792.2527796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFLOW '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2527792.2527796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NVM heaps for accelerating browser-based applications
The growth in browser-based computations is raising the need for efficient local storage for browser-based applications. A standard approach to control how such applications access and manipulate the underlying platform resources, is to run in-browser applications in a sandbox environment. Sandboxing works by static code analysis and system call interception, and as a result, the performance of browser applications making frequent I/O calls can be severely impacted. To address this, we explore the utility of next generation non-volatile memories (NVM) in client platforms. By using NVM as virtual memory, and integrating NVM support for browser applications with byte-addressable I/O interfaces, our approach shows up to 3.5x reduction in sandboxing cost and around 3x reduction in serialization overheads for browser-based applications, and improved application performance.