高吞吐量、低延迟的细粒度磁盘日志记录

D. Simha, T. Chiueh, G. Rajagopalan, P. Bose
{"title":"高吞吐量、低延迟的细粒度磁盘日志记录","authors":"D. Simha, T. Chiueh, G. Rajagopalan, P. Bose","doi":"10.1145/2465529.2465552","DOIUrl":null,"url":null,"abstract":"Synchronously logging updates to persistent storage first and then asynchronously committing these updates to their rightful storage locations is a well-known and heavily used technique to improve the sustained throughput of write-intensive disk-based data processing systems, whose latency and throughput accordingly are largely determined by the latency and throughput of the underlying logging mechanism. The conventional wisdom is that logging operations are relatively straightforward to optimize because the associated disk access pattern is largely sequential. However, it turns out that to achieve both high throughput and low latency for fine-grained logging operations, whose payload size is smaller than a disk sector, is extremely challenging. This paper describes the experiences and lessons we have gained from building a disk logging system that can successfully deliver over 1.2 million 256-byte logging operations per second, with the average logging latency below 1 msec.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-throughput low-latency fine-grained disk logging\",\"authors\":\"D. Simha, T. Chiueh, G. Rajagopalan, P. Bose\",\"doi\":\"10.1145/2465529.2465552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronously logging updates to persistent storage first and then asynchronously committing these updates to their rightful storage locations is a well-known and heavily used technique to improve the sustained throughput of write-intensive disk-based data processing systems, whose latency and throughput accordingly are largely determined by the latency and throughput of the underlying logging mechanism. The conventional wisdom is that logging operations are relatively straightforward to optimize because the associated disk access pattern is largely sequential. However, it turns out that to achieve both high throughput and low latency for fine-grained logging operations, whose payload size is smaller than a disk sector, is extremely challenging. This paper describes the experiences and lessons we have gained from building a disk logging system that can successfully deliver over 1.2 million 256-byte logging operations per second, with the average logging latency below 1 msec.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465529.2465552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

首先将更新同步地记录到持久存储中,然后将这些更新异步地提交到正确的存储位置,这是一种众所周知且广泛使用的技术,用于提高基于磁盘的写密集型数据处理系统的持续吞吐量,其延迟和吞吐量在很大程度上取决于底层日志记录机制的延迟和吞吐量。传统观点认为,日志操作相对容易优化,因为相关的磁盘访问模式在很大程度上是顺序的。然而,事实证明,要实现细粒度日志操作的高吞吐量和低延迟,其有效负载大小小于磁盘扇区,是极具挑战性的。本文描述了我们从构建磁盘日志系统中获得的经验和教训,该系统可以每秒成功地交付超过120万个256字节的日志操作,平均日志延迟低于1毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput low-latency fine-grained disk logging
Synchronously logging updates to persistent storage first and then asynchronously committing these updates to their rightful storage locations is a well-known and heavily used technique to improve the sustained throughput of write-intensive disk-based data processing systems, whose latency and throughput accordingly are largely determined by the latency and throughput of the underlying logging mechanism. The conventional wisdom is that logging operations are relatively straightforward to optimize because the associated disk access pattern is largely sequential. However, it turns out that to achieve both high throughput and low latency for fine-grained logging operations, whose payload size is smaller than a disk sector, is extremely challenging. This paper describes the experiences and lessons we have gained from building a disk logging system that can successfully deliver over 1.2 million 256-byte logging operations per second, with the average logging latency below 1 msec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1