多包接收无线传感器网络的跨层优化

Lei Shi, Jiang-Hong Han, Yi Shi, Zhenchun Wei
{"title":"多包接收无线传感器网络的跨层优化","authors":"Lei Shi, Jiang-Hong Han, Yi Shi, Zhenchun Wei","doi":"10.4108/CHINACOM.2010.41","DOIUrl":null,"url":null,"abstract":"In this paper, we consider how to exploit multi-packet reception (MPR) to increase the capacity for a wireless sensor network. Since MPR behavior at the physical layer affects link layer scheduling, it is necessary to follow a cross-layer approach to obtain an optimal solution. Due to the complexity of cross-layer optimization, although MPR has great potential to increase capacity, optimal solutions are yet to be developed. We build constraints for the signal-to-noise-ratio requirement under MPR at the physical layer such that we can check the feasibility for a set of concurrent transmissions. We further develop an upper bound for the number of concurrent transmissions, which enables us to identify all feasible sets of concurrent transmissions in polynomial time. Then a capacity problem can be formulated as a linear program (LP) but with a large number of variables. We propose a concept of maximum feasible set to decrease the size of LP. Finally, by comparing optimal solutions with and without MPR, we show that network capacity can be increased about 100% by using MPR.","PeriodicalId":422191,"journal":{"name":"2010 5th International ICST Conference on Communications and Networking in China","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Cross-layer optimization for wireless sensor network with multi-packet reception\",\"authors\":\"Lei Shi, Jiang-Hong Han, Yi Shi, Zhenchun Wei\",\"doi\":\"10.4108/CHINACOM.2010.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider how to exploit multi-packet reception (MPR) to increase the capacity for a wireless sensor network. Since MPR behavior at the physical layer affects link layer scheduling, it is necessary to follow a cross-layer approach to obtain an optimal solution. Due to the complexity of cross-layer optimization, although MPR has great potential to increase capacity, optimal solutions are yet to be developed. We build constraints for the signal-to-noise-ratio requirement under MPR at the physical layer such that we can check the feasibility for a set of concurrent transmissions. We further develop an upper bound for the number of concurrent transmissions, which enables us to identify all feasible sets of concurrent transmissions in polynomial time. Then a capacity problem can be formulated as a linear program (LP) but with a large number of variables. We propose a concept of maximum feasible set to decrease the size of LP. Finally, by comparing optimal solutions with and without MPR, we show that network capacity can be increased about 100% by using MPR.\",\"PeriodicalId\":422191,\"journal\":{\"name\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/CHINACOM.2010.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International ICST Conference on Communications and Networking in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/CHINACOM.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们考虑如何利用多分组接收(MPR)来增加无线传感器网络的容量。由于物理层的MPR行为会影响链路层调度,因此有必要采用跨层方法来获得最优解。由于跨层优化的复杂性,虽然MPR有很大的扩容潜力,但目前还没有最优的解决方案。我们在物理层建立了MPR下信噪比要求的约束,以便我们可以检查一组并发传输的可行性。进一步给出了并发传输数的上界,使我们能够在多项式时间内确定所有可行的并发传输集。这样,容量问题就可以被表述为一个具有大量变量的线性规划。为了减小LP的大小,我们提出了最大可行集的概念。最后,通过比较使用和不使用MPR的最优解,我们表明使用MPR可以使网络容量增加约100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-layer optimization for wireless sensor network with multi-packet reception
In this paper, we consider how to exploit multi-packet reception (MPR) to increase the capacity for a wireless sensor network. Since MPR behavior at the physical layer affects link layer scheduling, it is necessary to follow a cross-layer approach to obtain an optimal solution. Due to the complexity of cross-layer optimization, although MPR has great potential to increase capacity, optimal solutions are yet to be developed. We build constraints for the signal-to-noise-ratio requirement under MPR at the physical layer such that we can check the feasibility for a set of concurrent transmissions. We further develop an upper bound for the number of concurrent transmissions, which enables us to identify all feasible sets of concurrent transmissions in polynomial time. Then a capacity problem can be formulated as a linear program (LP) but with a large number of variables. We propose a concept of maximum feasible set to decrease the size of LP. Finally, by comparing optimal solutions with and without MPR, we show that network capacity can be increased about 100% by using MPR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive QoS mechanism for multimedia applications over next generation vehicular network Improving performance of MPEG-based stream by SCTP multi-streaming mechanism A mobicast routing protocol with carry-and-forward in vehicular ad-hoc networks Application of cyclostationarity to joint signal detection, classification, and blind parameter estimation The capacity region of a product Gaussian broadcast channel with degraded message sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1