{"title":"多包接收无线传感器网络的跨层优化","authors":"Lei Shi, Jiang-Hong Han, Yi Shi, Zhenchun Wei","doi":"10.4108/CHINACOM.2010.41","DOIUrl":null,"url":null,"abstract":"In this paper, we consider how to exploit multi-packet reception (MPR) to increase the capacity for a wireless sensor network. Since MPR behavior at the physical layer affects link layer scheduling, it is necessary to follow a cross-layer approach to obtain an optimal solution. Due to the complexity of cross-layer optimization, although MPR has great potential to increase capacity, optimal solutions are yet to be developed. We build constraints for the signal-to-noise-ratio requirement under MPR at the physical layer such that we can check the feasibility for a set of concurrent transmissions. We further develop an upper bound for the number of concurrent transmissions, which enables us to identify all feasible sets of concurrent transmissions in polynomial time. Then a capacity problem can be formulated as a linear program (LP) but with a large number of variables. We propose a concept of maximum feasible set to decrease the size of LP. Finally, by comparing optimal solutions with and without MPR, we show that network capacity can be increased about 100% by using MPR.","PeriodicalId":422191,"journal":{"name":"2010 5th International ICST Conference on Communications and Networking in China","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Cross-layer optimization for wireless sensor network with multi-packet reception\",\"authors\":\"Lei Shi, Jiang-Hong Han, Yi Shi, Zhenchun Wei\",\"doi\":\"10.4108/CHINACOM.2010.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider how to exploit multi-packet reception (MPR) to increase the capacity for a wireless sensor network. Since MPR behavior at the physical layer affects link layer scheduling, it is necessary to follow a cross-layer approach to obtain an optimal solution. Due to the complexity of cross-layer optimization, although MPR has great potential to increase capacity, optimal solutions are yet to be developed. We build constraints for the signal-to-noise-ratio requirement under MPR at the physical layer such that we can check the feasibility for a set of concurrent transmissions. We further develop an upper bound for the number of concurrent transmissions, which enables us to identify all feasible sets of concurrent transmissions in polynomial time. Then a capacity problem can be formulated as a linear program (LP) but with a large number of variables. We propose a concept of maximum feasible set to decrease the size of LP. Finally, by comparing optimal solutions with and without MPR, we show that network capacity can be increased about 100% by using MPR.\",\"PeriodicalId\":422191,\"journal\":{\"name\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/CHINACOM.2010.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International ICST Conference on Communications and Networking in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/CHINACOM.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-layer optimization for wireless sensor network with multi-packet reception
In this paper, we consider how to exploit multi-packet reception (MPR) to increase the capacity for a wireless sensor network. Since MPR behavior at the physical layer affects link layer scheduling, it is necessary to follow a cross-layer approach to obtain an optimal solution. Due to the complexity of cross-layer optimization, although MPR has great potential to increase capacity, optimal solutions are yet to be developed. We build constraints for the signal-to-noise-ratio requirement under MPR at the physical layer such that we can check the feasibility for a set of concurrent transmissions. We further develop an upper bound for the number of concurrent transmissions, which enables us to identify all feasible sets of concurrent transmissions in polynomial time. Then a capacity problem can be formulated as a linear program (LP) but with a large number of variables. We propose a concept of maximum feasible set to decrease the size of LP. Finally, by comparing optimal solutions with and without MPR, we show that network capacity can be increased about 100% by using MPR.