基于指数信息素沉积规则的蚂蚁系统算法扩展

A. Acharya, A. Banerjee, A. Konar, L. Jain
{"title":"基于指数信息素沉积规则的蚂蚁系统算法扩展","authors":"A. Acharya, A. Banerjee, A. Konar, L. Jain","doi":"10.1504/IJIDSS.2008.025020","DOIUrl":null,"url":null,"abstract":"The paper extends the classical Ant System (AS) algorithms by proposing a novel approach of exponential pheromone deposition by artificial ants ensuring a concentration gradient along solution paths. The stability analysis with a deterministic mathematical model based on differential equation yields the proper range of the parameters. A roadmap of connected cities, where the shortest path between a source-destination pair is to be determined, is taken as a problem environment. Exhaustive simulations confirm that the proposed deposition rule, with properly chosen parameter values, outperforms the traditional one with large margin both in terms of solution quality and algorithm convergence.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of Ant System algorithms with exponential pheromone deposition rule for improved performance\",\"authors\":\"A. Acharya, A. Banerjee, A. Konar, L. Jain\",\"doi\":\"10.1504/IJIDSS.2008.025020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper extends the classical Ant System (AS) algorithms by proposing a novel approach of exponential pheromone deposition by artificial ants ensuring a concentration gradient along solution paths. The stability analysis with a deterministic mathematical model based on differential equation yields the proper range of the parameters. A roadmap of connected cities, where the shortest path between a source-destination pair is to be determined, is taken as a problem environment. Exhaustive simulations confirm that the proposed deposition rule, with properly chosen parameter values, outperforms the traditional one with large margin both in terms of solution quality and algorithm convergence.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2008.025020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2008.025020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文扩展了经典的蚂蚁系统(AS)算法,提出了一种新的人工蚂蚁指数信息素沉积方法,确保沿溶液路径的浓度梯度。用基于微分方程的确定性数学模型进行稳定性分析,得到了合适的参数取值范围。将连接城市的路线图作为问题环境,其中需要确定源-目的对之间的最短路径。穷举仿真结果表明,在合理选择参数值的情况下,所提出的沉积规则在求解质量和算法收敛性方面都优于余量较大的传统沉积规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extension of Ant System algorithms with exponential pheromone deposition rule for improved performance
The paper extends the classical Ant System (AS) algorithms by proposing a novel approach of exponential pheromone deposition by artificial ants ensuring a concentration gradient along solution paths. The stability analysis with a deterministic mathematical model based on differential equation yields the proper range of the parameters. A roadmap of connected cities, where the shortest path between a source-destination pair is to be determined, is taken as a problem environment. Exhaustive simulations confirm that the proposed deposition rule, with properly chosen parameter values, outperforms the traditional one with large margin both in terms of solution quality and algorithm convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning-based approach for malware classification A novel approach to design a digital clock triggered modified pulse latch for 16-bit shift register Program viewer - a defence portfolio capability management system Archival solution API to upload bulk file and managing the data in cloud storage Face recognition under occlusion for user authentication and invigilation in remotely distributed online assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1