积累驱动无表面活性剂的结构不混溶金属纳米合金的强化催化合成

B. Rajeeva, Pranaw Kunal, P. Kollipara, Palash V. Acharya, M. Joe, Matthew S. Ide, K. Jarvis, Yuanyue Liu, V. Bahadur, S. M. Humphrey, Yuebing Zheng
{"title":"积累驱动无表面活性剂的结构不混溶金属纳米合金的强化催化合成","authors":"B. Rajeeva, Pranaw Kunal, P. Kollipara, Palash V. Acharya, M. Joe, Matthew S. Ide, K. Jarvis, Yuanyue Liu, V. Bahadur, S. M. Humphrey, Yuebing Zheng","doi":"10.2139/ssrn.3372970","DOIUrl":null,"url":null,"abstract":"Accumulation-mediated chemical reactions are a ubiquitous phenomenon in nature. Herein, we explore microbubble-induced accumulation of precursor ions to achieve surfactant-free synthesis of immiscible metallic nanoalloys and to simultaneously pattern the nanoalloys into targeted architectures for their enhanced catalytic applications. We name our approach as a unified spatiotemporal synthesis and structuring (US3) strategy, wherein millisecond-scale accumulation of the precursor ions in a highly confined laser-mediated microbubble trap (MBT) drives ultra-fast alloy synthesis in sync with the structuring process. As a case-in-point, we employ US3 strategy for the in-situ surfactant-free synthesis and patterning of traditionally immiscible rhodium-gold (RhAu) nanoalloys. Stochastic random walk simulations justify the millisecond-scale accumulation process, leading to a 3-order reduction in synthesis time. The catalytic activity and structure-property relationship of the structured nanoalloys were evaluated using the reduction of p-nitrophenol with NaBH4. Our in-situ synthesis and structuring strategy can be translated for high-throughput production and screening of multi-metallic systems with tailored catalytic, opto-electronic, and magnetic functions.","PeriodicalId":299681,"journal":{"name":"ChemRN: Inorganic Catalysis (Topic)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation-Driven Surfactant-Free Synthesis of Architectured Immiscible Metallic Nanoalloys with Enhanced Catalysis\",\"authors\":\"B. Rajeeva, Pranaw Kunal, P. Kollipara, Palash V. Acharya, M. Joe, Matthew S. Ide, K. Jarvis, Yuanyue Liu, V. Bahadur, S. M. Humphrey, Yuebing Zheng\",\"doi\":\"10.2139/ssrn.3372970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulation-mediated chemical reactions are a ubiquitous phenomenon in nature. Herein, we explore microbubble-induced accumulation of precursor ions to achieve surfactant-free synthesis of immiscible metallic nanoalloys and to simultaneously pattern the nanoalloys into targeted architectures for their enhanced catalytic applications. We name our approach as a unified spatiotemporal synthesis and structuring (US3) strategy, wherein millisecond-scale accumulation of the precursor ions in a highly confined laser-mediated microbubble trap (MBT) drives ultra-fast alloy synthesis in sync with the structuring process. As a case-in-point, we employ US3 strategy for the in-situ surfactant-free synthesis and patterning of traditionally immiscible rhodium-gold (RhAu) nanoalloys. Stochastic random walk simulations justify the millisecond-scale accumulation process, leading to a 3-order reduction in synthesis time. The catalytic activity and structure-property relationship of the structured nanoalloys were evaluated using the reduction of p-nitrophenol with NaBH4. Our in-situ synthesis and structuring strategy can be translated for high-throughput production and screening of multi-metallic systems with tailored catalytic, opto-electronic, and magnetic functions.\",\"PeriodicalId\":299681,\"journal\":{\"name\":\"ChemRN: Inorganic Catalysis (Topic)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRN: Inorganic Catalysis (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3372970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRN: Inorganic Catalysis (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3372970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

积累介导的化学反应是自然界中普遍存在的现象。在此,我们探索了微泡诱导的前体离子积累,以实现无表面活性剂的不混溶金属纳米合金的合成,并同时将纳米合金图案化为目标结构,以增强其催化应用。我们将我们的方法命名为统一的时空合成和结构(US3)策略,其中前体离子在高度受限的激光介导的微泡陷阱(MBT)中毫秒级的积累驱动超快速合金合成与结构过程同步。作为一个例子,我们采用US3策略进行原位无表面活性剂合成和传统不混相铑金(RhAu)纳米合金的图像化。随机漫步模拟证明了毫秒级积累过程,导致合成时间减少了3阶。利用NaBH4还原对硝基苯酚,评价了结构纳米合金的催化活性和结构性能关系。我们的原位合成和结构策略可以转化为具有定制催化,光电和磁性功能的高通量多金属体系的生产和筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accumulation-Driven Surfactant-Free Synthesis of Architectured Immiscible Metallic Nanoalloys with Enhanced Catalysis
Accumulation-mediated chemical reactions are a ubiquitous phenomenon in nature. Herein, we explore microbubble-induced accumulation of precursor ions to achieve surfactant-free synthesis of immiscible metallic nanoalloys and to simultaneously pattern the nanoalloys into targeted architectures for their enhanced catalytic applications. We name our approach as a unified spatiotemporal synthesis and structuring (US3) strategy, wherein millisecond-scale accumulation of the precursor ions in a highly confined laser-mediated microbubble trap (MBT) drives ultra-fast alloy synthesis in sync with the structuring process. As a case-in-point, we employ US3 strategy for the in-situ surfactant-free synthesis and patterning of traditionally immiscible rhodium-gold (RhAu) nanoalloys. Stochastic random walk simulations justify the millisecond-scale accumulation process, leading to a 3-order reduction in synthesis time. The catalytic activity and structure-property relationship of the structured nanoalloys were evaluated using the reduction of p-nitrophenol with NaBH4. Our in-situ synthesis and structuring strategy can be translated for high-throughput production and screening of multi-metallic systems with tailored catalytic, opto-electronic, and magnetic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
S Doping Optimized Intermediate Energetics of FeCoOOh for Enhanced Oxygen Evolution Catalytic Activity Accumulation-Driven Surfactant-Free Synthesis of Architectured Immiscible Metallic Nanoalloys with Enhanced Catalysis A Cobalt Complex of Bis(Methylthioether)Pyridine Catalyst for Hydrogen Evolution from Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1