基于计算机交互轨迹的开发人员流状态非侵入识别研究

Zhiwen Zheng, Liang Wang, Yue Cao, Yuqian Zhuang, Xianping Tao
{"title":"基于计算机交互轨迹的开发人员流状态非侵入识别研究","authors":"Zhiwen Zheng, Liang Wang, Yue Cao, Yuqian Zhuang, Xianping Tao","doi":"10.1109/APSEC48747.2019.00048","DOIUrl":null,"url":null,"abstract":"Flow is a holistic description of people's optimal experiences during creative activities that can be characterized as being totally concentrated on, and actively involved in the task, enjoying the process of creation, and achieving a balance between one's skill and the task's challenge. Understanding software developers' flow states has attracted an increasing attention in both research and practice because of the strong link between being in flow and achieving good performance. In this paper, we study the problem of tracking and recognizing developers' flow states by tracing their computer interactions including activities of using the keyboard, mouse, IDE functions, and switching application windows. Compared to the traditional approaches that rely on self-reports or wearable sensors, a major advantage of the proposed approach is being non-invasive for not requiring any additional efforts from the developers after the training phase is completed, which is important because the developers' flow states can easily be interrupted by external interferences. Based on the captured interaction traces, we represent the developers' activities with extensive features, and propose to address the flow state recognition problem using machine learning technologies. And a hierarchical recognition model is built following the multi-dimensional construct of the flow concept, which is interpretable and effective. We develop a prototype system and conduct a 17-day field study in a medium-sized IT company in China to collect real-world data. The results show that our approach is effective by achieving the highest recognition accuracy of 92.6%, and efficient for performing real-time recognition.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Non-Invasive Recognition of Developers' Flow States with Computer Interaction Traces\",\"authors\":\"Zhiwen Zheng, Liang Wang, Yue Cao, Yuqian Zhuang, Xianping Tao\",\"doi\":\"10.1109/APSEC48747.2019.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow is a holistic description of people's optimal experiences during creative activities that can be characterized as being totally concentrated on, and actively involved in the task, enjoying the process of creation, and achieving a balance between one's skill and the task's challenge. Understanding software developers' flow states has attracted an increasing attention in both research and practice because of the strong link between being in flow and achieving good performance. In this paper, we study the problem of tracking and recognizing developers' flow states by tracing their computer interactions including activities of using the keyboard, mouse, IDE functions, and switching application windows. Compared to the traditional approaches that rely on self-reports or wearable sensors, a major advantage of the proposed approach is being non-invasive for not requiring any additional efforts from the developers after the training phase is completed, which is important because the developers' flow states can easily be interrupted by external interferences. Based on the captured interaction traces, we represent the developers' activities with extensive features, and propose to address the flow state recognition problem using machine learning technologies. And a hierarchical recognition model is built following the multi-dimensional construct of the flow concept, which is interpretable and effective. We develop a prototype system and conduct a 17-day field study in a medium-sized IT company in China to collect real-world data. The results show that our approach is effective by achieving the highest recognition accuracy of 92.6%, and efficient for performing real-time recognition.\",\"PeriodicalId\":325642,\"journal\":{\"name\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC48747.2019.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心流是对人们在创造性活动中的最佳体验的整体描述,其特征是完全专注于并积极参与任务,享受创造过程,在技能和任务挑战之间取得平衡。了解软件开发人员的心流状态在研究和实践中都引起了越来越多的关注,因为处于心流状态和取得良好绩效之间存在着密切的联系。在本文中,我们通过跟踪开发人员的计算机交互,包括使用键盘、鼠标、IDE功能和切换应用程序窗口的活动,研究了跟踪和识别开发人员流状态的问题。与依赖自我报告或可穿戴传感器的传统方法相比,该方法的主要优点是非侵入性,在训练阶段完成后不需要开发人员进行任何额外的工作,这一点很重要,因为开发人员的心流状态很容易被外部干扰打断。基于捕获的交互轨迹,我们用广泛的特征来表示开发人员的活动,并提出使用机器学习技术来解决流状态识别问题。根据流概念的多维结构,建立了可解释、有效的分层识别模型。我们开发了一个原型系统,并在中国一家中型IT公司进行了为期17天的实地研究,以收集真实世界的数据。结果表明,该方法具有较高的识别准确率(92.6%),能够有效地进行实时识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Non-Invasive Recognition of Developers' Flow States with Computer Interaction Traces
Flow is a holistic description of people's optimal experiences during creative activities that can be characterized as being totally concentrated on, and actively involved in the task, enjoying the process of creation, and achieving a balance between one's skill and the task's challenge. Understanding software developers' flow states has attracted an increasing attention in both research and practice because of the strong link between being in flow and achieving good performance. In this paper, we study the problem of tracking and recognizing developers' flow states by tracing their computer interactions including activities of using the keyboard, mouse, IDE functions, and switching application windows. Compared to the traditional approaches that rely on self-reports or wearable sensors, a major advantage of the proposed approach is being non-invasive for not requiring any additional efforts from the developers after the training phase is completed, which is important because the developers' flow states can easily be interrupted by external interferences. Based on the captured interaction traces, we represent the developers' activities with extensive features, and propose to address the flow state recognition problem using machine learning technologies. And a hierarchical recognition model is built following the multi-dimensional construct of the flow concept, which is interpretable and effective. We develop a prototype system and conduct a 17-day field study in a medium-sized IT company in China to collect real-world data. The results show that our approach is effective by achieving the highest recognition accuracy of 92.6%, and efficient for performing real-time recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Duplicate Questions in Stack Overflow via Deep Learning Approaches An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT Systems Integrating Static Program Analysis Tools for Verifying Cautions of Microcontroller How Compact Will My System Be? A Fully-Automated Way to Calculate LoC Reduced by Clone Refactoring Neural Comment Generation for Source Code with Auxiliary Code Classification Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1