用于JPEG图像隐写分析的相位感知卷积神经网络

Mo Chen, V. Sedighi, M. Boroumand, J. Fridrich
{"title":"用于JPEG图像隐写分析的相位感知卷积神经网络","authors":"Mo Chen, V. Sedighi, M. Boroumand, J. Fridrich","doi":"10.1145/3082031.3083248","DOIUrl":null,"url":null,"abstract":"Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the \"catalyst kernel\" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.","PeriodicalId":431672,"journal":{"name":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images\",\"authors\":\"Mo Chen, V. Sedighi, M. Boroumand, J. Fridrich\",\"doi\":\"10.1145/3082031.3083248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the \\\"catalyst kernel\\\" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.\",\"PeriodicalId\":431672,\"journal\":{\"name\":\"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3082031.3083248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3082031.3083248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

摘要

传统上,现代JPEG隐写算法的检测依赖于感知JPEG相位的特征。在本文中,我们将jpeg相位感知移植到卷积神经网络的架构中,以提高此类检测器的检测精度。检测器中引入的另一个创新概念是“催化剂内核”,它与用于预处理图像的传统高通滤波器一起,使网络能够学习与JPEG隐写术引入的隐写信号检测更相关的内核。用J-UNIWARD和ed - jc嵌入算法进行了实验,验证了所提设计的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images
Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the "catalyst kernel" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined and Calibrated Features for Steganalysis of Motion Vector-Based Steganography in H.264/AVC Information-theoretic Bounds of Resampling Forensics: New Evidence for Traces Beyond Cyclostationarity Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security Text Steganography with High Embedding Rate: Using Recurrent Neural Networks to Generate Chinese Classic Poetry Nonlinear Feature Normalization in Steganalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1