面向编程课程编码风格的自动反馈

Zi Wang, A. Alsam, Donn Morrison, K. A. Strand
{"title":"面向编程课程编码风格的自动反馈","authors":"Zi Wang, A. Alsam, Donn Morrison, K. A. Strand","doi":"10.1109/ICALT52272.2021.00017","DOIUrl":null,"url":null,"abstract":"In this research, we developed a methodology for automatic evaluation of coding style and estimate its effectiveness compared to human evaluation. To achieve this, we developed 179 features spanning 8 categories to capture code structure and other stylistic properties. Results based on a set of student assignments and code from a Python textbook validate the features as effective in classification tasks. The features were further used to optimise classifiers to predict the teacher’s evaluation of the student code and obtain good classification accuracy. The proposed feature set and experimental results provide a first step towards providing students with automatic coding style feedback.","PeriodicalId":170895,"journal":{"name":"2021 International Conference on Advanced Learning Technologies (ICALT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward automatic feedback of coding style for programming courses\",\"authors\":\"Zi Wang, A. Alsam, Donn Morrison, K. A. Strand\",\"doi\":\"10.1109/ICALT52272.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we developed a methodology for automatic evaluation of coding style and estimate its effectiveness compared to human evaluation. To achieve this, we developed 179 features spanning 8 categories to capture code structure and other stylistic properties. Results based on a set of student assignments and code from a Python textbook validate the features as effective in classification tasks. The features were further used to optimise classifiers to predict the teacher’s evaluation of the student code and obtain good classification accuracy. The proposed feature set and experimental results provide a first step towards providing students with automatic coding style feedback.\",\"PeriodicalId\":170895,\"journal\":{\"name\":\"2021 International Conference on Advanced Learning Technologies (ICALT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Advanced Learning Technologies (ICALT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT52272.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT52272.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们开发了一种自动评估编码风格的方法,并将其与人工评估进行了比较。为了实现这一目标,我们开发了179个特性,涵盖8个类别,以捕获代码结构和其他风格属性。基于一组学生作业和Python教科书中的代码的结果验证了这些特性在分类任务中的有效性。利用这些特征进一步优化分类器,预测教师对学生代码的评价,获得较好的分类精度。提出的功能集和实验结果为为学生提供自动编码风格反馈提供了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward automatic feedback of coding style for programming courses
In this research, we developed a methodology for automatic evaluation of coding style and estimate its effectiveness compared to human evaluation. To achieve this, we developed 179 features spanning 8 categories to capture code structure and other stylistic properties. Results based on a set of student assignments and code from a Python textbook validate the features as effective in classification tasks. The features were further used to optimise classifiers to predict the teacher’s evaluation of the student code and obtain good classification accuracy. The proposed feature set and experimental results provide a first step towards providing students with automatic coding style feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro-Prompt: A Strategy for Designing Pedagogically Effective Assignment Free Micro-Lectures for Online Education Systems An Exploratory Study to Identify Learners' Programming Behavior Interactions Automatic and Intelligent Recommendations to Support Students’ Self-Regulation VEA: A Virtual Environment for Animal experimentation Teachers’ Information and Communication Technology (ICT) Assessment Tools: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1