使用前馈神经网络控制器的STL规范的最坏情况满足:一种拉格朗日乘法器方法

Shakiba Yaghoubi, Georgios Fainekos
{"title":"使用前馈神经网络控制器的STL规范的最坏情况满足:一种拉格朗日乘法器方法","authors":"Shakiba Yaghoubi, Georgios Fainekos","doi":"10.1109/ITA50056.2020.9244969","DOIUrl":null,"url":null,"abstract":"In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach\",\"authors\":\"Shakiba Yaghoubi, Georgios Fainekos\",\"doi\":\"10.1109/ITA50056.2020.9244969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种用于非线性系统反馈神经网络控制器设计的强化学习方法。给定系统在一组初始条件下需要满足的信号时序逻辑(STL)规范,对神经网络参数进行调整,以最大限度地满足STL公式。该框架基于STL公式鲁棒性的最大最小公式。通过拉格朗日乘子法求解最大问题,而最小问题对应于证伪问题。我们提出了我们的车辆和四旋翼模型的结果,并证明我们的方法减少了训练时间超过50%的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach
In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1