基于手写和手写签名轮廓信息的生物识别识别

Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh
{"title":"基于手写和手写签名轮廓信息的生物识别识别","authors":"Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2017.8284292","DOIUrl":null,"url":null,"abstract":"The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biometric identifier based on hand and hand-written signature contour information\",\"authors\":\"Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh\",\"doi\":\"10.1109/IC3.2017.8284292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.\",\"PeriodicalId\":147099,\"journal\":{\"name\":\"2017 Tenth International Conference on Contemporary Computing (IC3)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Tenth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2017.8284292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种结合两种不同特征的生物识别系统:手的形状(手指的长度和宽度)和手写的签名轮廓。签名数据库包含300个不同的签名者,有24个签名,手数据库有144个所有者,有10个图像。该研究涵盖了三种不同的分类器:隐马尔可夫模型(HMM),支持向量机(SVM)以及使用Fisher核的两者的组合。系统分别评估和联合评估,在每种情况下,组合分类器的识别成功率为100%。特征组合在约简训练集时比独立系统得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biometric identifier based on hand and hand-written signature contour information
The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clickstream & behavioral analysis with context awareness for e-commercial applications Clustering based minimum spanning tree algorithm Sarcasm detection of tweets: A comparative study Quantum genetic algorithm with rotation angle refinement for dependent task scheduling on distributed systems An approach to maintain attendance using image processing techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1