{"title":"基于CNN的360度全景图像实时目标检测","authors":"Yiming Zhang, Xiangyun Xiao, Xubo Yang","doi":"10.1109/ICVRV.2017.00013","DOIUrl":null,"url":null,"abstract":"The object detection for 360-degree panoramic images is widely applied in many areas such as automatic driving, navigation of drones and driving assistance. Most of state-of-the-art approaches for detecting objects in ordinary images cannot work well on the object detection for 360-degree panoramic images. As a 360-degree panoramic image can be considered as a 2D image which is the result of a 360-degree panoramic sphere being expanded along the longitude line, objects in it will be twisted or divided apart and the detection will be more difficult. In this paper, we present a real-time object detection system for 360-degree panoramic images using convolutional neural network (CNN). We adopt a CNN-based detection framework for object detection with a post-processing stage to fine-tune the result. Additionally, we propose a novel method to reuse those exisiting datasets of ordinary images, e.g., the ImageNet and PASCAL VOC, in the object detection for 360-degree panoramic images. We will demonstrate with several examples that our method yields higher accuracy and recall rate than traditional methods in object detection for 360-degree panoramic images.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Real-Time Object Detection for 360-Degree Panoramic Image Using CNN\",\"authors\":\"Yiming Zhang, Xiangyun Xiao, Xubo Yang\",\"doi\":\"10.1109/ICVRV.2017.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object detection for 360-degree panoramic images is widely applied in many areas such as automatic driving, navigation of drones and driving assistance. Most of state-of-the-art approaches for detecting objects in ordinary images cannot work well on the object detection for 360-degree panoramic images. As a 360-degree panoramic image can be considered as a 2D image which is the result of a 360-degree panoramic sphere being expanded along the longitude line, objects in it will be twisted or divided apart and the detection will be more difficult. In this paper, we present a real-time object detection system for 360-degree panoramic images using convolutional neural network (CNN). We adopt a CNN-based detection framework for object detection with a post-processing stage to fine-tune the result. Additionally, we propose a novel method to reuse those exisiting datasets of ordinary images, e.g., the ImageNet and PASCAL VOC, in the object detection for 360-degree panoramic images. We will demonstrate with several examples that our method yields higher accuracy and recall rate than traditional methods in object detection for 360-degree panoramic images.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2017.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Object Detection for 360-Degree Panoramic Image Using CNN
The object detection for 360-degree panoramic images is widely applied in many areas such as automatic driving, navigation of drones and driving assistance. Most of state-of-the-art approaches for detecting objects in ordinary images cannot work well on the object detection for 360-degree panoramic images. As a 360-degree panoramic image can be considered as a 2D image which is the result of a 360-degree panoramic sphere being expanded along the longitude line, objects in it will be twisted or divided apart and the detection will be more difficult. In this paper, we present a real-time object detection system for 360-degree panoramic images using convolutional neural network (CNN). We adopt a CNN-based detection framework for object detection with a post-processing stage to fine-tune the result. Additionally, we propose a novel method to reuse those exisiting datasets of ordinary images, e.g., the ImageNet and PASCAL VOC, in the object detection for 360-degree panoramic images. We will demonstrate with several examples that our method yields higher accuracy and recall rate than traditional methods in object detection for 360-degree panoramic images.