基于相位差的RFID医疗导航

A. Wille, Magdalena Broll, S. Winter
{"title":"基于相位差的RFID医疗导航","authors":"A. Wille, Magdalena Broll, S. Winter","doi":"10.1109/RFID.2011.5764608","DOIUrl":null,"url":null,"abstract":"RFID localization is a promising new field of work that is eagerly awaited for many different types of applications. For use in a medical context, special requirements and limitations must be taken into account, especially regarding accuracy, reliability and operating range. In this paper we present an experimental setup for a medical navigation system based on RFID. For this we applied a machine learning algorithm, namely support vector regression, to phase difference data gathered from multiple RFID receivers. The performance was tested on six datasets of different shape and placement within the volume spanned by the receivers. In addition, two grid based training sets of different size were considered for the regression. Our results show that it is possible to reach an accuracy of tag localization that is sufficient for some medical applications. Although we could not reach an overall accuracy of less than one millimeter in our experiments so far, the deviation was limited to two millimeters in most cases and the general results indicate that application of RFID localization even to highly critical applications, e. g., for brain surgery, will be possible soon.","PeriodicalId":222446,"journal":{"name":"2011 IEEE International Conference on RFID","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Phase difference based RFID navigation for medical applications\",\"authors\":\"A. Wille, Magdalena Broll, S. Winter\",\"doi\":\"10.1109/RFID.2011.5764608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RFID localization is a promising new field of work that is eagerly awaited for many different types of applications. For use in a medical context, special requirements and limitations must be taken into account, especially regarding accuracy, reliability and operating range. In this paper we present an experimental setup for a medical navigation system based on RFID. For this we applied a machine learning algorithm, namely support vector regression, to phase difference data gathered from multiple RFID receivers. The performance was tested on six datasets of different shape and placement within the volume spanned by the receivers. In addition, two grid based training sets of different size were considered for the regression. Our results show that it is possible to reach an accuracy of tag localization that is sufficient for some medical applications. Although we could not reach an overall accuracy of less than one millimeter in our experiments so far, the deviation was limited to two millimeters in most cases and the general results indicate that application of RFID localization even to highly critical applications, e. g., for brain surgery, will be possible soon.\",\"PeriodicalId\":222446,\"journal\":{\"name\":\"2011 IEEE International Conference on RFID\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on RFID\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID.2011.5764608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on RFID","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID.2011.5764608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

RFID定位是一个很有前途的新工作领域,许多不同类型的应用都热切地等待着它。在医疗环境中使用时,必须考虑特殊要求和限制,特别是在准确性、可靠性和操作范围方面。本文提出了一种基于RFID的医疗导航系统实验装置。为此,我们应用了一种机器学习算法,即支持向量回归,来处理从多个RFID接收器收集的相位差数据。在接收器所跨越的体积范围内,对六个不同形状和位置的数据集进行了性能测试。此外,考虑了两个不同大小的网格训练集进行回归。我们的结果表明,有可能达到标签定位的准确性,足以用于一些医疗应用。虽然到目前为止,我们在实验中无法达到小于1毫米的总体精度,但在大多数情况下,偏差被限制在2毫米以内,总体结果表明,RFID定位的应用,即使是高度关键的应用,例如,脑部手术,也将很快成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase difference based RFID navigation for medical applications
RFID localization is a promising new field of work that is eagerly awaited for many different types of applications. For use in a medical context, special requirements and limitations must be taken into account, especially regarding accuracy, reliability and operating range. In this paper we present an experimental setup for a medical navigation system based on RFID. For this we applied a machine learning algorithm, namely support vector regression, to phase difference data gathered from multiple RFID receivers. The performance was tested on six datasets of different shape and placement within the volume spanned by the receivers. In addition, two grid based training sets of different size were considered for the regression. Our results show that it is possible to reach an accuracy of tag localization that is sufficient for some medical applications. Although we could not reach an overall accuracy of less than one millimeter in our experiments so far, the deviation was limited to two millimeters in most cases and the general results indicate that application of RFID localization even to highly critical applications, e. g., for brain surgery, will be possible soon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A2U2: A stream cipher for printed electronics RFID tags Implementation of an adaptive leakage cancellation control for passive UHF RFID readers Experimental evaluation of RFID gate concepts Linearly-tapered RFID tag antenna with 40% material reduction for ultra-low-cost applications RFID tag antenna based temperature sensing in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1