使用预处理卷积神经网络检测分布式拒绝服务攻击

M. Ghanbari, W. Kinsner, K. Ferens
{"title":"使用预处理卷积神经网络检测分布式拒绝服务攻击","authors":"M. Ghanbari, W. Kinsner, K. Ferens","doi":"10.1109/EPEC.2017.8286243","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme for detecting distributed denial of service (DDoS) attacks for smart grids. The main procedure of the proposed approach consists of applying a discrete wavelet transform to input data to extract features; training a convolutional neural network (CNN) to the extracted features; and testing the CNN to detect anomalous behavior in the data based on a threshold determined in the training parameters. The implementation detected the DDoS attack with 56.1% accuracy with the one stage CNN and 80.77% accuracy with the one stage pre-processed CNN.","PeriodicalId":141250,"journal":{"name":"2017 IEEE Electrical Power and Energy Conference (EPEC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detecting a distributed denial of service attack using a pre-processed convolutional neural network\",\"authors\":\"M. Ghanbari, W. Kinsner, K. Ferens\",\"doi\":\"10.1109/EPEC.2017.8286243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scheme for detecting distributed denial of service (DDoS) attacks for smart grids. The main procedure of the proposed approach consists of applying a discrete wavelet transform to input data to extract features; training a convolutional neural network (CNN) to the extracted features; and testing the CNN to detect anomalous behavior in the data based on a threshold determined in the training parameters. The implementation detected the DDoS attack with 56.1% accuracy with the one stage CNN and 80.77% accuracy with the one stage pre-processed CNN.\",\"PeriodicalId\":141250,\"journal\":{\"name\":\"2017 IEEE Electrical Power and Energy Conference (EPEC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Electrical Power and Energy Conference (EPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2017.8286243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2017.8286243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种智能电网分布式拒绝服务(DDoS)攻击检测方案。该方法的主要步骤是对输入数据进行离散小波变换提取特征;对提取的特征训练卷积神经网络(CNN);并根据训练参数中确定的阈值测试CNN以检测数据中的异常行为。该实现使用一阶段CNN检测DDoS攻击的准确率为56.1%,使用一阶段预处理CNN检测准确率为80.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting a distributed denial of service attack using a pre-processed convolutional neural network
This paper presents a scheme for detecting distributed denial of service (DDoS) attacks for smart grids. The main procedure of the proposed approach consists of applying a discrete wavelet transform to input data to extract features; training a convolutional neural network (CNN) to the extracted features; and testing the CNN to detect anomalous behavior in the data based on a threshold determined in the training parameters. The implementation detected the DDoS attack with 56.1% accuracy with the one stage CNN and 80.77% accuracy with the one stage pre-processed CNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particular PV grid-connected system under symmetrical and asymmetrical faults analysis An online framework for integration of demand response in residential load management Characteristics analysis and practical model of UHVDC systems under large disturbance Teaching IEC 61850 based substation automation through hands-on experiences Multi area load frequency control of interconnected power systems using JAYA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1