基于粗糙约简的半监督聚类算法

Liandong Lin, Wei Qu, Xiang Yu
{"title":"基于粗糙约简的半监督聚类算法","authors":"Liandong Lin, Wei Qu, Xiang Yu","doi":"10.1109/CCDC.2009.5195160","DOIUrl":null,"url":null,"abstract":"Clustering analysis is an important issue in data mining fields. Clustering in high dimensional space is especially difficult for a series of problems, such as the sparseness of spatial distribution of data, too much noise data points. Based on the analysis of current clustering algorithms can not get satisfying clustering results of high dimensional data. The theory of rough set and the idea of semi-supervised are introduced. And a semi-supervised grid clustering algorithm RSGrid based on the reduction of rough set theory is proposed. The theoretical analysis and experimental results indicate the algorithm can solve the problem of clustering in high dimensional space efficiently.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A semi-supervised clustering algorithm based on rough reduction\",\"authors\":\"Liandong Lin, Wei Qu, Xiang Yu\",\"doi\":\"10.1109/CCDC.2009.5195160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering analysis is an important issue in data mining fields. Clustering in high dimensional space is especially difficult for a series of problems, such as the sparseness of spatial distribution of data, too much noise data points. Based on the analysis of current clustering algorithms can not get satisfying clustering results of high dimensional data. The theory of rough set and the idea of semi-supervised are introduced. And a semi-supervised grid clustering algorithm RSGrid based on the reduction of rough set theory is proposed. The theoretical analysis and experimental results indicate the algorithm can solve the problem of clustering in high dimensional space efficiently.\",\"PeriodicalId\":127110,\"journal\":{\"name\":\"2009 Chinese Control and Decision Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2009.5195160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5195160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

聚类分析是数据挖掘领域的一个重要问题。在高维空间中,数据空间分布稀疏、噪声数据点过多等问题是聚类的难点。在分析现有聚类算法的基础上,不能得到令人满意的高维数据聚类结果。介绍了粗糙集理论和半监督的思想。提出了一种基于粗糙集约简的半监督网格聚类算法RSGrid。理论分析和实验结果表明,该算法能有效地解决高维空间的聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-supervised clustering algorithm based on rough reduction
Clustering analysis is an important issue in data mining fields. Clustering in high dimensional space is especially difficult for a series of problems, such as the sparseness of spatial distribution of data, too much noise data points. Based on the analysis of current clustering algorithms can not get satisfying clustering results of high dimensional data. The theory of rough set and the idea of semi-supervised are introduced. And a semi-supervised grid clustering algorithm RSGrid based on the reduction of rough set theory is proposed. The theoretical analysis and experimental results indicate the algorithm can solve the problem of clustering in high dimensional space efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Observer-based H∞ control for discrete-time T-S fuzzy systems Soft sensor for distillation column feeds Design of temperature measure system for variable sensitive temperature range Wavelet neural network based fault diagnosis of asynchronous motor Analysis of the divert ability of atmospheric interceptors controlled by lateral jet thrusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1