基于卷积神经网络的花卉图像分类

Sandip Desai, C. Gode, P. Fulzele
{"title":"基于卷积神经网络的花卉图像分类","authors":"Sandip Desai, C. Gode, P. Fulzele","doi":"10.1109/ICEEICT53079.2022.9768635","DOIUrl":null,"url":null,"abstract":"In the field of pharmaceutical industry, botany and agricultural there is a need of algorithm which will classify the flowers by processing its image. In this context, we propose a flower classification approach based on convolutional neural network. We have applied transfer learning approach for classification of flowers. We have used VGG19 convolution neural network architecture for extraction of features. As we wanted to classify flowers in 17 different classes so we have used 17 neurons in final dense layer of VGG19 convolution neural network architecture with the use of softmax activation function. Results show that we have classified flowers with the validation accuracy of 91.1 % and training accuracy of 100%.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flower Image Classification Using Convolutional Neural Network\",\"authors\":\"Sandip Desai, C. Gode, P. Fulzele\",\"doi\":\"10.1109/ICEEICT53079.2022.9768635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of pharmaceutical industry, botany and agricultural there is a need of algorithm which will classify the flowers by processing its image. In this context, we propose a flower classification approach based on convolutional neural network. We have applied transfer learning approach for classification of flowers. We have used VGG19 convolution neural network architecture for extraction of features. As we wanted to classify flowers in 17 different classes so we have used 17 neurons in final dense layer of VGG19 convolution neural network architecture with the use of softmax activation function. Results show that we have classified flowers with the validation accuracy of 91.1 % and training accuracy of 100%.\",\"PeriodicalId\":201910,\"journal\":{\"name\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT53079.2022.9768635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在医药工业、植物学和农业等领域,需要一种通过处理花卉图像来对花卉进行分类的算法。在此背景下,我们提出了一种基于卷积神经网络的花卉分类方法。我们将迁移学习方法应用于花卉分类。我们使用了VGG19卷积神经网络架构进行特征提取。由于我们想将花分为17个不同的类别,所以我们在VGG19卷积神经网络架构的最终密集层中使用了17个神经元,并使用了softmax激活函数。结果表明,该方法对花卉进行了分类,验证准确率为91.1%,训练准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flower Image Classification Using Convolutional Neural Network
In the field of pharmaceutical industry, botany and agricultural there is a need of algorithm which will classify the flowers by processing its image. In this context, we propose a flower classification approach based on convolutional neural network. We have applied transfer learning approach for classification of flowers. We have used VGG19 convolution neural network architecture for extraction of features. As we wanted to classify flowers in 17 different classes so we have used 17 neurons in final dense layer of VGG19 convolution neural network architecture with the use of softmax activation function. Results show that we have classified flowers with the validation accuracy of 91.1 % and training accuracy of 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packet Transmission using Radio Access Protocol for Intra-Cluster Communications in Mobile Ad hoc Networks Performance of Combined RF and non-RF based Energy Harvesting scheme for Multi-Relay Cooperative Cognitive Radio Network Image Recognition, Classification and Analysis Using Convolutional Neural Networks An Optimized technique for a Sapid Motor pooling Tariff Forecasting System Pneumothorax Segmentation from Chest X-Rays Using U-Net/U-Net++ Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1