基于扩展卡尔曼滤波的INS/GPS松耦合集成方案

V. Agarwal, H. Arya, Biswanath Nayak, Lalit R. Saptarshi
{"title":"基于扩展卡尔曼滤波的INS/GPS松耦合集成方案","authors":"V. Agarwal, H. Arya, Biswanath Nayak, Lalit R. Saptarshi","doi":"10.1504/IJIDSS.2008.020271","DOIUrl":null,"url":null,"abstract":"GPS provides an accurate position and velocity information but with a slower update rate, whereas INS provides position, velocity and attitude information with a higher update rate. However, INS alone cannot provide proper solutions due to the increasing error characteristics of the accelerometer and gyros of the inertial sensor. To get an accurate navigation solution, it is necessary to integrate INS with GPS. This paper discusses integration of INS/GPS systems using Extended Kalman Filter (EKF). TMS320vc33 floating point DSP is used for INS and EKF computations. A FPGA (Field Programmable Gate Array) based GPS data acquisition system and Dual Port RAM (DPRAM) have been designed and used for the presented architecture.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Extended Kalman Filter based loosely coupled INS/GPS integration scheme using FPGA and DSP\",\"authors\":\"V. Agarwal, H. Arya, Biswanath Nayak, Lalit R. Saptarshi\",\"doi\":\"10.1504/IJIDSS.2008.020271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPS provides an accurate position and velocity information but with a slower update rate, whereas INS provides position, velocity and attitude information with a higher update rate. However, INS alone cannot provide proper solutions due to the increasing error characteristics of the accelerometer and gyros of the inertial sensor. To get an accurate navigation solution, it is necessary to integrate INS with GPS. This paper discusses integration of INS/GPS systems using Extended Kalman Filter (EKF). TMS320vc33 floating point DSP is used for INS and EKF computations. A FPGA (Field Programmable Gate Array) based GPS data acquisition system and Dual Port RAM (DPRAM) have been designed and used for the presented architecture.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2008.020271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2008.020271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

GPS提供精确的位置和速度信息,但更新速率较慢,而INS提供位置、速度和姿态信息,更新速率较高。然而,由于惯性传感器的加速度计和陀螺仪的误差特性越来越大,单靠惯性惯性系统无法提供合适的解决方案。为了获得精确的导航解,必须将惯性导航系统与GPS相结合。本文讨论了利用扩展卡尔曼滤波(EKF)实现INS/GPS系统集成的方法。采用TMS320vc33浮点DSP进行INS和EKF计算。基于FPGA(现场可编程门阵列)和双端口RAM (DPRAM)设计了GPS数据采集系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Kalman Filter based loosely coupled INS/GPS integration scheme using FPGA and DSP
GPS provides an accurate position and velocity information but with a slower update rate, whereas INS provides position, velocity and attitude information with a higher update rate. However, INS alone cannot provide proper solutions due to the increasing error characteristics of the accelerometer and gyros of the inertial sensor. To get an accurate navigation solution, it is necessary to integrate INS with GPS. This paper discusses integration of INS/GPS systems using Extended Kalman Filter (EKF). TMS320vc33 floating point DSP is used for INS and EKF computations. A FPGA (Field Programmable Gate Array) based GPS data acquisition system and Dual Port RAM (DPRAM) have been designed and used for the presented architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning-based approach for malware classification A novel approach to design a digital clock triggered modified pulse latch for 16-bit shift register Program viewer - a defence portfolio capability management system Archival solution API to upload bulk file and managing the data in cloud storage Face recognition under occlusion for user authentication and invigilation in remotely distributed online assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1