用于粒子群优化的弹簧振子模型

L. Tan, Jifeng Sun
{"title":"用于粒子群优化的弹簧振子模型","authors":"L. Tan, Jifeng Sun","doi":"10.1109/SIS.2013.6615164","DOIUrl":null,"url":null,"abstract":"Specific to the difficulty of optimization on complex multimodal problems, this paper proposes a spring oscillator model used for particle swarm optimizer algorithm (SOMPSO). In SOMPSO, the particles that trapped in the local optima in some dimensions and certain individual extreme points whose corresponding dimensions' positions are the farthest from them, will constitute the vibrators and the equilibrium points of several spring oscillator models (SOM) respectively. Velocities and positions of particles will be updated dynamically referred to the physical principle of SOM. This SOM enlarges the search space of particles to increase the diversity of the swarm. The experiment results show that, SOMPSO algorithm has good performance when compared with other four variants of the particle swarm optimizer (PSO) on the optimization of the multimodal composition functions.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A spring oscillator model used for particle swarm optimizer\",\"authors\":\"L. Tan, Jifeng Sun\",\"doi\":\"10.1109/SIS.2013.6615164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specific to the difficulty of optimization on complex multimodal problems, this paper proposes a spring oscillator model used for particle swarm optimizer algorithm (SOMPSO). In SOMPSO, the particles that trapped in the local optima in some dimensions and certain individual extreme points whose corresponding dimensions' positions are the farthest from them, will constitute the vibrators and the equilibrium points of several spring oscillator models (SOM) respectively. Velocities and positions of particles will be updated dynamically referred to the physical principle of SOM. This SOM enlarges the search space of particles to increase the diversity of the swarm. The experiment results show that, SOMPSO algorithm has good performance when compared with other four variants of the particle swarm optimizer (PSO) on the optimization of the multimodal composition functions.\",\"PeriodicalId\":444765,\"journal\":{\"name\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2013.6615164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对复杂多模态问题的优化难点,提出了一种用于粒子群优化算法(SOMPSO)的弹簧振子模型。在SOMPSO中,被困在某些维度的局部最优点的粒子和相应维度位置离它们最远的个别极值点将分别构成几种弹簧振子模型(SOM)的振子和平衡点。粒子的速度和位置将根据SOM的物理原理动态更新。这种SOM扩大了粒子的搜索空间,增加了群体的多样性。实验结果表明,与粒子群优化器(PSO)的其他四种变体相比,SOMPSO算法在多模态组成函数的优化方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A spring oscillator model used for particle swarm optimizer
Specific to the difficulty of optimization on complex multimodal problems, this paper proposes a spring oscillator model used for particle swarm optimizer algorithm (SOMPSO). In SOMPSO, the particles that trapped in the local optima in some dimensions and certain individual extreme points whose corresponding dimensions' positions are the farthest from them, will constitute the vibrators and the equilibrium points of several spring oscillator models (SOM) respectively. Velocities and positions of particles will be updated dynamically referred to the physical principle of SOM. This SOM enlarges the search space of particles to increase the diversity of the swarm. The experiment results show that, SOMPSO algorithm has good performance when compared with other four variants of the particle swarm optimizer (PSO) on the optimization of the multimodal composition functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of stagnation behavior of vector evaluated particle swarm optimization Reinforcement learning in swarm-robotics for multi-agent foraging-task domain A novel ACO algorithm for dynamic binary chains based on changes in the system's stability Cooperative particle swarm optimization in dynamic environments Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1