基于k均值聚类的彩色视网膜图像渗出物检测与分类

G. G. Rajput, Preethi N. Patil
{"title":"基于k均值聚类的彩色视网膜图像渗出物检测与分类","authors":"G. G. Rajput, Preethi N. Patil","doi":"10.1109/ICSIP.2014.25","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is one of the leading causes of blindness in the world among patients suffering from diabetes. It is an ocular disease and progressive by nature. It is characterized by many pathologies, namely microaneurysms, hard exudates, soft exudates, hemorrhages, etc, among them presence of exudates is the prominent sign of non-proliferative DR. Both hard and soft exudates play a vital role in grading DR into different stages. In this paper, we present an efficient method to identify and classify the exudates as hard and soft exudates. The retinal image in CIELAB color space is pre-processed to eliminate noise. Next, blood vessels network is eliminated to facilitate detection and elimination of optic disc. Optic disc is eliminated using Hough transform technique. The candidate exudates are then detected using k-means clustering technique. Finally, the exudates are classified as hard and soft exudates based on their edge energy and threshold. The proposed method has yielded encouraging results.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Detection and Classification of Exudates Using K-Means Clustering in Color Retinal Images\",\"authors\":\"G. G. Rajput, Preethi N. Patil\",\"doi\":\"10.1109/ICSIP.2014.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is one of the leading causes of blindness in the world among patients suffering from diabetes. It is an ocular disease and progressive by nature. It is characterized by many pathologies, namely microaneurysms, hard exudates, soft exudates, hemorrhages, etc, among them presence of exudates is the prominent sign of non-proliferative DR. Both hard and soft exudates play a vital role in grading DR into different stages. In this paper, we present an efficient method to identify and classify the exudates as hard and soft exudates. The retinal image in CIELAB color space is pre-processed to eliminate noise. Next, blood vessels network is eliminated to facilitate detection and elimination of optic disc. Optic disc is eliminated using Hough transform technique. The candidate exudates are then detected using k-means clustering technique. Finally, the exudates are classified as hard and soft exudates based on their edge energy and threshold. The proposed method has yielded encouraging results.\",\"PeriodicalId\":111591,\"journal\":{\"name\":\"2014 Fifth International Conference on Signal and Image Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fifth International Conference on Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIP.2014.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

糖尿病视网膜病变(DR)是世界上糖尿病患者致盲的主要原因之一。这是一种眼部疾病,本质上是进行性的。其病理特征有微动脉瘤、硬渗出物、软渗出物、出血等,其中渗出物的存在是DR非增殖性的突出标志,硬渗出物和软渗出物对DR的分期分级起着至关重要的作用。在本文中,我们提出了一种有效的方法来识别和分类硬渗出液和软渗出液。对CIELAB色彩空间中的视网膜图像进行预处理,消除噪声。其次,消除血管网络,以方便视盘的检测和消除。利用霍夫变换技术消除视盘。然后使用k-均值聚类技术检测候选渗出物。最后,根据边缘能量和阈值将渗出液分为硬渗出液和软渗出液。所提出的方法产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Classification of Exudates Using K-Means Clustering in Color Retinal Images
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world among patients suffering from diabetes. It is an ocular disease and progressive by nature. It is characterized by many pathologies, namely microaneurysms, hard exudates, soft exudates, hemorrhages, etc, among them presence of exudates is the prominent sign of non-proliferative DR. Both hard and soft exudates play a vital role in grading DR into different stages. In this paper, we present an efficient method to identify and classify the exudates as hard and soft exudates. The retinal image in CIELAB color space is pre-processed to eliminate noise. Next, blood vessels network is eliminated to facilitate detection and elimination of optic disc. Optic disc is eliminated using Hough transform technique. The candidate exudates are then detected using k-means clustering technique. Finally, the exudates are classified as hard and soft exudates based on their edge energy and threshold. The proposed method has yielded encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rule Line Detection and Removal in Handwritten Text Images Features Based IUGR Diagnosis Using Variational Level Set Method and Classification Using Artificial Neural Networks Design of a Low Error Fixed-Width Radix-8 Booth Multiplier Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds Wavelet Based Signal Processing Technique for Classification of Power Quality Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1