人工神经网络均衡器在室内可见光通信系统中的应用研究

E. Ertunc, Othman Isam Younus, E. Ciaramella, Zabih Ghassemlooy
{"title":"人工神经网络均衡器在室内可见光通信系统中的应用研究","authors":"E. Ertunc, Othman Isam Younus, E. Ciaramella, Zabih Ghassemlooy","doi":"10.1109/CSNDSP54353.2022.9908051","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a non-line-of-sight visible light communication system with the artificial neural network (ANN)-based equalizer that uses the machine learning algorithm Levenberg-Marquardt (LM). We investigate the system performance in terms of the bit error rate for 2-, 4-, 8-, 16-, 32-of pulse amplitude modulation (PAM) scheme using an ANN-based equalizer with 4, 5, 10, 17, and 20 hidden neurons that are optimized. The signal to noise ratio (SNR) penalties are below 10 dB at a bit error rate of $10^{-4}$, which is below the 7% forward error correction limit of $3.8 \\times 10^{-3}$. We also compare the LM algorithm over Broyden-Fletcher-Goldfarb-Shanno) quasi-newton, resilient backpropagation, and gradient descent backpropagation. LM offers the best result with a 7 dB SNR penalty at a BER of $2\\times 10^{-4}$. Lastly, a 1 Mbit/s 4-PAM lin with an ANN-based equalizer with 5 hidden neurons is demonstrated over transmission distances of 1, 3, and 6 m is performed, with the lowest SNR penalty of 0.5 dB for the 1 m link.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the use of Artificial Neural Network Equalizer in Indoor Visible Light Communication Systems\",\"authors\":\"E. Ertunc, Othman Isam Younus, E. Ciaramella, Zabih Ghassemlooy\",\"doi\":\"10.1109/CSNDSP54353.2022.9908051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a non-line-of-sight visible light communication system with the artificial neural network (ANN)-based equalizer that uses the machine learning algorithm Levenberg-Marquardt (LM). We investigate the system performance in terms of the bit error rate for 2-, 4-, 8-, 16-, 32-of pulse amplitude modulation (PAM) scheme using an ANN-based equalizer with 4, 5, 10, 17, and 20 hidden neurons that are optimized. The signal to noise ratio (SNR) penalties are below 10 dB at a bit error rate of $10^{-4}$, which is below the 7% forward error correction limit of $3.8 \\\\times 10^{-3}$. We also compare the LM algorithm over Broyden-Fletcher-Goldfarb-Shanno) quasi-newton, resilient backpropagation, and gradient descent backpropagation. LM offers the best result with a 7 dB SNR penalty at a BER of $2\\\\times 10^{-4}$. Lastly, a 1 Mbit/s 4-PAM lin with an ANN-based equalizer with 5 hidden neurons is demonstrated over transmission distances of 1, 3, and 6 m is performed, with the lowest SNR penalty of 0.5 dB for the 1 m link.\",\"PeriodicalId\":288069,\"journal\":{\"name\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP54353.2022.9908051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9908051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一种基于人工神经网络(ANN)均衡器的非视距可见光通信系统,该系统使用机器学习算法Levenberg-Marquardt (LM)。我们从误码率的角度研究了2、4、8、16、32位脉冲幅度调制(PAM)方案的系统性能,使用基于人工神经网络的均衡器,优化了4、5、10、17和20个隐藏神经元。在误码率为$10^{-4}$的情况下,信噪比(SNR)惩罚低于10 dB,低于7%的前向纠错限制$3.8 \乘以10^{-3}$。我们还比较了LM算法在Broyden-Fletcher-Goldfarb-Shanno)准牛顿、弹性反向传播和梯度下降反向传播上的性能。LM提供了最好的结果,在2\乘以10^{-4}$的误码率下,信噪比损失为7 dB。最后,在传输距离为1,3,6 m的情况下,演示了具有5个隐藏神经元的基于人工神经网络均衡器的1 Mbit/s 4-PAM lin,在1 m链路上的信噪比最低为0.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the use of Artificial Neural Network Equalizer in Indoor Visible Light Communication Systems
In this paper, we investigate a non-line-of-sight visible light communication system with the artificial neural network (ANN)-based equalizer that uses the machine learning algorithm Levenberg-Marquardt (LM). We investigate the system performance in terms of the bit error rate for 2-, 4-, 8-, 16-, 32-of pulse amplitude modulation (PAM) scheme using an ANN-based equalizer with 4, 5, 10, 17, and 20 hidden neurons that are optimized. The signal to noise ratio (SNR) penalties are below 10 dB at a bit error rate of $10^{-4}$, which is below the 7% forward error correction limit of $3.8 \times 10^{-3}$. We also compare the LM algorithm over Broyden-Fletcher-Goldfarb-Shanno) quasi-newton, resilient backpropagation, and gradient descent backpropagation. LM offers the best result with a 7 dB SNR penalty at a BER of $2\times 10^{-4}$. Lastly, a 1 Mbit/s 4-PAM lin with an ANN-based equalizer with 5 hidden neurons is demonstrated over transmission distances of 1, 3, and 6 m is performed, with the lowest SNR penalty of 0.5 dB for the 1 m link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Visible Light Positioning with MSE Inner Loop for Underwater Environment Fibre Optics Biosensors for the Detection of Bacteria – a review Experimental characterization of sub-pixel underwater optical camera communications Energy aware routing protocol for sparse underwater acoustic wireless sensor network iDAM: A Distributed MUD Framework for Mitigation of Volumetric Attacks in IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1