面向可穿戴机器人的肌肉驱动控制:人体外骨骼运动任务中神经肌肉状态估计的实时框架

G. Durandau, Wolfgang F. Rampeltshammer, H. Kooij, Massimo Sartori
{"title":"面向可穿戴机器人的肌肉驱动控制:人体外骨骼运动任务中神经肌肉状态估计的实时框架","authors":"G. Durandau, Wolfgang F. Rampeltshammer, H. Kooij, Massimo Sartori","doi":"10.1109/BIOROB.2018.8487723","DOIUrl":null,"url":null,"abstract":"The ability to efficiently assist human movement via wearable robotic exoskeletons requires a deep understanding of human-exoskeleton physical interaction. That is, how the exoskeleton affects human movement and how the human body reacts to robotic assistance. In this context, it is central to gain access to human neuromuscular states, i.e. neural activation to muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon viscoelasticity. This would enable the personalized design of assistive devices and human-exoskeleton interfaces with respect to a specific subject's anatomy and force-generating capacity. Here we present a real-time electromyography-driven framework interfaced to a robotic bilateral ankle exoskeleton. This framework provides real-time information about joint and underlying muscle mechanics. We provide a quantitative evaluation of the real-time framework across a repertoire of human-exoskeleton locomotion tasks. We also show how this enables understanding how robotic exoskeletons in parallel to human limbs contribute to alter normative musculoskeletal mechanics. This will open new avenues for the creation of symbiotic exoskeleton technologies that operate as an extension of the own body.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toward Muscle-Driven Control of Wearable Robots: A Real-Time Framework for the Estimation of Neuromuscular States During Human-Exoskeleton Locomotion Tasks\",\"authors\":\"G. Durandau, Wolfgang F. Rampeltshammer, H. Kooij, Massimo Sartori\",\"doi\":\"10.1109/BIOROB.2018.8487723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to efficiently assist human movement via wearable robotic exoskeletons requires a deep understanding of human-exoskeleton physical interaction. That is, how the exoskeleton affects human movement and how the human body reacts to robotic assistance. In this context, it is central to gain access to human neuromuscular states, i.e. neural activation to muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon viscoelasticity. This would enable the personalized design of assistive devices and human-exoskeleton interfaces with respect to a specific subject's anatomy and force-generating capacity. Here we present a real-time electromyography-driven framework interfaced to a robotic bilateral ankle exoskeleton. This framework provides real-time information about joint and underlying muscle mechanics. We provide a quantitative evaluation of the real-time framework across a repertoire of human-exoskeleton locomotion tasks. We also show how this enables understanding how robotic exoskeletons in parallel to human limbs contribute to alter normative musculoskeletal mechanics. This will open new avenues for the creation of symbiotic exoskeleton technologies that operate as an extension of the own body.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过可穿戴机器人外骨骼有效地辅助人类运动的能力需要对人类外骨骼物理相互作用的深刻理解。也就是说,外骨骼如何影响人体运动以及人体对机器人辅助的反应。在这种情况下,获得人类神经肌肉状态的访问是核心,即肌肉的神经激活,肌肉纤维短拉伸周期,肌腱应变,肌肉肌腱粘弹性。这将使辅助设备和人体外骨骼接口的个性化设计与特定主体的解剖结构和力量产生能力有关。在这里,我们提出了一个实时肌电驱动的框架接口到一个机器人双侧踝关节外骨骼。这个框架提供了关节和潜在肌肉力学的实时信息。我们提供了一个实时框架的定量评估跨剧目的人类外骨骼运动任务。我们还展示了这如何使理解与人类四肢平行的机器人外骨骼如何有助于改变规范的肌肉骨骼力学。这将为创造共生外骨骼技术开辟新的途径,使其成为人体的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Muscle-Driven Control of Wearable Robots: A Real-Time Framework for the Estimation of Neuromuscular States During Human-Exoskeleton Locomotion Tasks
The ability to efficiently assist human movement via wearable robotic exoskeletons requires a deep understanding of human-exoskeleton physical interaction. That is, how the exoskeleton affects human movement and how the human body reacts to robotic assistance. In this context, it is central to gain access to human neuromuscular states, i.e. neural activation to muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon viscoelasticity. This would enable the personalized design of assistive devices and human-exoskeleton interfaces with respect to a specific subject's anatomy and force-generating capacity. Here we present a real-time electromyography-driven framework interfaced to a robotic bilateral ankle exoskeleton. This framework provides real-time information about joint and underlying muscle mechanics. We provide a quantitative evaluation of the real-time framework across a repertoire of human-exoskeleton locomotion tasks. We also show how this enables understanding how robotic exoskeletons in parallel to human limbs contribute to alter normative musculoskeletal mechanics. This will open new avenues for the creation of symbiotic exoskeleton technologies that operate as an extension of the own body.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insect-Inspired Body Size Learning Model on a Humanoid Robot Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies Optimization-Based Analysis of a Cartwheel Quantifying Human Autonomy Recovery During Ankle Robot-Assisted Reversal of Foot Drop After Stroke ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1