基于多层次建模的人体运动仿真方法

Luca Serena, M. Marzolla, Gabriele D’angelo, S. Ferretti
{"title":"基于多层次建模的人体运动仿真方法","authors":"Luca Serena, M. Marzolla, Gabriele D’angelo, S. Ferretti","doi":"10.1109/DS-RT55542.2022.9932080","DOIUrl":null,"url":null,"abstract":"Multilevel modeling is increasingly relevant in the context of modelling and simulation since it leads to several potential benefits, such as software reuse and integration, the split of semantically separated levels into sub-models, the possibility to employ different levels of detail, and the potential for parallel execution. The coupling that inevitably exists between the sub-models, however, implies the need for maintaining consistency between the various components, more so when different simulation paradigms are employed (e.g., sequential vs parallel, discrete vs continuous). In this paper we argue that multilevel modelling is well suited for the simulation of human mobility, since it naturally leads to the decomposition of the model into two layers, the “micro” and “macro” layer, where individual entities (micro) and long-range interactions (macro) are described. In this paper we investigate the challenges of multilevel modeling, and describe some preliminary results using prototype implementations of multilayer simulators in the context of epidemic diffusion and vehicle pollution.","PeriodicalId":243042,"journal":{"name":"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multilevel Modeling as a Methodology for the Simulation of Human Mobility\",\"authors\":\"Luca Serena, M. Marzolla, Gabriele D’angelo, S. Ferretti\",\"doi\":\"10.1109/DS-RT55542.2022.9932080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilevel modeling is increasingly relevant in the context of modelling and simulation since it leads to several potential benefits, such as software reuse and integration, the split of semantically separated levels into sub-models, the possibility to employ different levels of detail, and the potential for parallel execution. The coupling that inevitably exists between the sub-models, however, implies the need for maintaining consistency between the various components, more so when different simulation paradigms are employed (e.g., sequential vs parallel, discrete vs continuous). In this paper we argue that multilevel modelling is well suited for the simulation of human mobility, since it naturally leads to the decomposition of the model into two layers, the “micro” and “macro” layer, where individual entities (micro) and long-range interactions (macro) are described. In this paper we investigate the challenges of multilevel modeling, and describe some preliminary results using prototype implementations of multilayer simulators in the context of epidemic diffusion and vehicle pollution.\",\"PeriodicalId\":243042,\"journal\":{\"name\":\"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT55542.2022.9932080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT55542.2022.9932080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多层建模在建模和仿真的上下文中越来越相关,因为它会带来一些潜在的好处,例如软件重用和集成、将语义分离的级别拆分为子模型、采用不同细节级别的可能性,以及并行执行的可能性。然而,子模型之间不可避免地存在耦合,这意味着需要保持不同组件之间的一致性,当采用不同的仿真范式时更是如此(例如,顺序与并行,离散与连续)。在本文中,我们认为多层次建模非常适合人类流动性的模拟,因为它自然地导致模型分解为两层,“微观”和“宏观”层,其中描述了个体实体(微观)和远程交互(宏观)。在本文中,我们研究了多层建模的挑战,并描述了在流行病扩散和车辆污染背景下使用多层模拟器的原型实现的一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilevel Modeling as a Methodology for the Simulation of Human Mobility
Multilevel modeling is increasingly relevant in the context of modelling and simulation since it leads to several potential benefits, such as software reuse and integration, the split of semantically separated levels into sub-models, the possibility to employ different levels of detail, and the potential for parallel execution. The coupling that inevitably exists between the sub-models, however, implies the need for maintaining consistency between the various components, more so when different simulation paradigms are employed (e.g., sequential vs parallel, discrete vs continuous). In this paper we argue that multilevel modelling is well suited for the simulation of human mobility, since it naturally leads to the decomposition of the model into two layers, the “micro” and “macro” layer, where individual entities (micro) and long-range interactions (macro) are described. In this paper we investigate the challenges of multilevel modeling, and describe some preliminary results using prototype implementations of multilayer simulators in the context of epidemic diffusion and vehicle pollution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of the Internet Computer Protocol: the Next Generation Multi-Blockchain Architecture Cell-DEVS CO2 Models With Occupants and Ducts Towards an efficient cost function equation for DDR SDRAM interference analysis on heterogeneous MPSoCs Performance of Extended LoRaEnergySim Simulator in supporting Multi-Gateway scenarios and Interference Management Blue Danube: A Large-Scale, End-to-End Synchronous, Distributed Data Stream Processing Architecture for Time-Sensitive Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1