基因调控网络的时间关联规则

Elena Baralis, G. Bruno, E. Ficarra
{"title":"基因调控网络的时间关联规则","authors":"Elena Baralis, G. Bruno, E. Ficarra","doi":"10.1109/IS.2008.4670511","DOIUrl":null,"url":null,"abstract":"DNA hybridization arrays simultaneously measure the expression level for thousands of genes. A great challenge in the bioinformatics field is to discover gene interactions from such measurements and estimate gene networks. In this paper, we exploit data mining techniques for discovering interactions among genes based on multiple expression measurements. We present an application of the Apriori algorithm to extract temporal association rules from gene expression data. Furthermore, we address the problem of real value discretization by using both fixed thresholds and clustering techniques. Finally, we estimate the value of each rule by means of an appropriate quality index. Preliminary experimental results on Saccharomyces cerevisiae cell cycle gene expression data show the effectiveness of the proposed method.","PeriodicalId":305750,"journal":{"name":"2008 4th International IEEE Conference Intelligent Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Temporal association rules for gene regulatory networks\",\"authors\":\"Elena Baralis, G. Bruno, E. Ficarra\",\"doi\":\"10.1109/IS.2008.4670511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA hybridization arrays simultaneously measure the expression level for thousands of genes. A great challenge in the bioinformatics field is to discover gene interactions from such measurements and estimate gene networks. In this paper, we exploit data mining techniques for discovering interactions among genes based on multiple expression measurements. We present an application of the Apriori algorithm to extract temporal association rules from gene expression data. Furthermore, we address the problem of real value discretization by using both fixed thresholds and clustering techniques. Finally, we estimate the value of each rule by means of an appropriate quality index. Preliminary experimental results on Saccharomyces cerevisiae cell cycle gene expression data show the effectiveness of the proposed method.\",\"PeriodicalId\":305750,\"journal\":{\"name\":\"2008 4th International IEEE Conference Intelligent Systems\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2008.4670511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2008.4670511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

DNA杂交阵列同时测量数千个基因的表达水平。从这些测量中发现基因相互作用并估计基因网络是生物信息学领域的一大挑战。在本文中,我们利用数据挖掘技术来发现基于多个表达测量的基因之间的相互作用。我们提出了一种应用Apriori算法从基因表达数据中提取时间关联规则的方法。此外,我们通过使用固定阈值和聚类技术来解决实值离散化问题。最后,我们通过适当的质量指标来估计每条规则的值。对酿酒酵母细胞周期基因表达数据的初步实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal association rules for gene regulatory networks
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. A great challenge in the bioinformatics field is to discover gene interactions from such measurements and estimate gene networks. In this paper, we exploit data mining techniques for discovering interactions among genes based on multiple expression measurements. We present an application of the Apriori algorithm to extract temporal association rules from gene expression data. Furthermore, we address the problem of real value discretization by using both fixed thresholds and clustering techniques. Finally, we estimate the value of each rule by means of an appropriate quality index. Preliminary experimental results on Saccharomyces cerevisiae cell cycle gene expression data show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Neural Network for detecting nonlinear determinism in gastric electrical activity: Fractal dimension approach Clustering and sorting multi-attribute objects in multiset metric space Design of a context script language for developing context-aware applications in ubiquitous intelligent environment The software for 3D-viewing of educational topic maps Semantics-based information valuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1