通过声发射从触摸界面检索输入

K. Teo, T. BalamuraliB., Jer-Ming Chen, Jianying Zhou
{"title":"通过声发射从触摸界面检索输入","authors":"K. Teo, T. BalamuraliB., Jer-Ming Chen, Jianying Zhou","doi":"10.1109/DSC49826.2021.9346271","DOIUrl":null,"url":null,"abstract":"Security for mobile devices have largely focused on the development of trusted hardware and securing software, however these secure platforms are still vulnerable to physical side channel attacks. Side channel attacks bypass secure hardware access controls, exploiting the physical characteristics of devices and onboard sensors to compromise and leak sensitive information. In this paper, we investigate the use of onboard sensors to recover user input on touchscreen interfaces. We evaluate the use of motion and acoustic sensors to categories user interactions with the device and apply machine learning techniques to find a strong correlation between acoustic emanations and user input. The acoustic output of a touch-screen mobile device is used to build a model that predicts user input with up to 86 % accuracy in a rpa listie scpnario_","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Retrieving Input from Touch Interfaces via Acoustic Emanations\",\"authors\":\"K. Teo, T. BalamuraliB., Jer-Ming Chen, Jianying Zhou\",\"doi\":\"10.1109/DSC49826.2021.9346271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security for mobile devices have largely focused on the development of trusted hardware and securing software, however these secure platforms are still vulnerable to physical side channel attacks. Side channel attacks bypass secure hardware access controls, exploiting the physical characteristics of devices and onboard sensors to compromise and leak sensitive information. In this paper, we investigate the use of onboard sensors to recover user input on touchscreen interfaces. We evaluate the use of motion and acoustic sensors to categories user interactions with the device and apply machine learning techniques to find a strong correlation between acoustic emanations and user input. The acoustic output of a touch-screen mobile device is used to build a model that predicts user input with up to 86 % accuracy in a rpa listie scpnario_\",\"PeriodicalId\":184504,\"journal\":{\"name\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC49826.2021.9346271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

移动设备的安全主要集中在可信硬件和安全软件的开发上,然而这些安全平台仍然容易受到物理侧信道攻击。侧信道攻击绕过安全的硬件访问控制,利用设备和板载传感器的物理特性来破坏和泄露敏感信息。在本文中,我们研究了使用板载传感器来恢复触摸屏界面上的用户输入。我们评估了运动和声学传感器的使用,以分类用户与设备的交互,并应用机器学习技术来发现声学发射和用户输入之间的强相关性。触摸屏移动设备的声学输出被用来建立一个模型,该模型在rpa listie场景中预测用户输入的准确率高达86%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieving Input from Touch Interfaces via Acoustic Emanations
Security for mobile devices have largely focused on the development of trusted hardware and securing software, however these secure platforms are still vulnerable to physical side channel attacks. Side channel attacks bypass secure hardware access controls, exploiting the physical characteristics of devices and onboard sensors to compromise and leak sensitive information. In this paper, we investigate the use of onboard sensors to recover user input on touchscreen interfaces. We evaluate the use of motion and acoustic sensors to categories user interactions with the device and apply machine learning techniques to find a strong correlation between acoustic emanations and user input. The acoustic output of a touch-screen mobile device is used to build a model that predicts user input with up to 86 % accuracy in a rpa listie scpnario_
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Provable Data Possession Protocol in Cloud Storage Systems with Fault Tolerance Arithmetic Coding for Floating-Point Numbers A Novel Dynamic Group Signature with Membership Privacy ExamChain: A Privacy-Preserving Onscreen Marking System based on Consortium Blockchain Designated Verifier Signature Transformation: A New Framework for One-Time Delegating Verifiability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1