周期ARMA过程的单变量时变分析

M. Karanasos, A. Paraskevopoulos, Stavros Dafnos
{"title":"周期ARMA过程的单变量时变分析","authors":"M. Karanasos, A. Paraskevopoulos, Stavros Dafnos","doi":"10.2139/ssrn.2411538","DOIUrl":null,"url":null,"abstract":"The standard approach for studying the periodic ARMA model with coefficients that vary over the seasons is to express it in a vector form. In this paper we introduce an alternative method which views the periodic formulation as a time varying univariate process and obviates the need for vector analysis. The specification, interpretation, and solution of a periodic ARMA process enable us to formulate a forecasting method which avoids recursion and allows us to obtain analytic expressions of the optimal predictors. Our results on periodic models are general, analogous to those for stationary specifications, and place the former on the same computational basis as the latter.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Univariate Time Varying Analysis of Periodic ARMA Processes\",\"authors\":\"M. Karanasos, A. Paraskevopoulos, Stavros Dafnos\",\"doi\":\"10.2139/ssrn.2411538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard approach for studying the periodic ARMA model with coefficients that vary over the seasons is to express it in a vector form. In this paper we introduce an alternative method which views the periodic formulation as a time varying univariate process and obviates the need for vector analysis. The specification, interpretation, and solution of a periodic ARMA process enable us to formulate a forecasting method which avoids recursion and allows us to obtain analytic expressions of the optimal predictors. Our results on periodic models are general, analogous to those for stationary specifications, and place the former on the same computational basis as the latter.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2411538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2411538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究系数随季节变化的周期性ARMA模型的标准方法是将其表示为矢量形式。在本文中,我们介绍了一种替代方法,它将周期公式视为时变的单变量过程,从而避免了向量分析的需要。周期性ARMA过程的规范、解释和求解使我们能够制定一种避免递归的预测方法,并使我们能够获得最优预测因子的解析表达式。我们在周期模型上的结果是一般的,类似于那些固定规格,并将前者置于与后者相同的计算基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Univariate Time Varying Analysis of Periodic ARMA Processes
The standard approach for studying the periodic ARMA model with coefficients that vary over the seasons is to express it in a vector form. In this paper we introduce an alternative method which views the periodic formulation as a time varying univariate process and obviates the need for vector analysis. The specification, interpretation, and solution of a periodic ARMA process enable us to formulate a forecasting method which avoids recursion and allows us to obtain analytic expressions of the optimal predictors. Our results on periodic models are general, analogous to those for stationary specifications, and place the former on the same computational basis as the latter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1