{"title":"基于卷积神经网络提取形状和运动信息的面部表情分析","authors":"B. Fasel","doi":"10.1109/NNSP.2002.1030072","DOIUrl":null,"url":null,"abstract":"We discuss a neural networks-based face analysis approach that is able to cope with faces subject to pose and lighting variations. Especially head pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. Data-driven shape and motion-based face analysis approaches are introduced that are not only capable of extracting features relevant to a given face analysis task, but are also robust with regard to translation and scale variations. This is achieved by deploying convolutional and time-delayed neural networks, which are either trained for face shape deformation or facial motion analysis.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Facial expression analysis using shape and motion information extracted by convolutional neural networks\",\"authors\":\"B. Fasel\",\"doi\":\"10.1109/NNSP.2002.1030072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a neural networks-based face analysis approach that is able to cope with faces subject to pose and lighting variations. Especially head pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. Data-driven shape and motion-based face analysis approaches are introduced that are not only capable of extracting features relevant to a given face analysis task, but are also robust with regard to translation and scale variations. This is achieved by deploying convolutional and time-delayed neural networks, which are either trained for face shape deformation or facial motion analysis.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial expression analysis using shape and motion information extracted by convolutional neural networks
We discuss a neural networks-based face analysis approach that is able to cope with faces subject to pose and lighting variations. Especially head pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. Data-driven shape and motion-based face analysis approaches are introduced that are not only capable of extracting features relevant to a given face analysis task, but are also robust with regard to translation and scale variations. This is achieved by deploying convolutional and time-delayed neural networks, which are either trained for face shape deformation or facial motion analysis.