TmoTA:简单,高度响应的工具,用于多对象跟踪注释

M. T. Oyshi, Sebastian Vogt, S. Gumhold
{"title":"TmoTA:简单,高度响应的工具,用于多对象跟踪注释","authors":"M. T. Oyshi, Sebastian Vogt, S. Gumhold","doi":"10.1145/3544548.3581185","DOIUrl":null,"url":null,"abstract":"Machine learning is applied in a multitude of sectors with very impressive results. This success is due to the availability of an ever-growing amount of data acquired by omnipresent sensor devices and platforms on the internet. But there is a scarcity of labeled data which is required for most ML methods. However, generation of labeled data requires much time and resources. In this paper, we propose a portable, Open Source, simple and responsive manual Tool for 2D multiple object Tracking Annotation (TmoTA). Besides responsiveness, our tool design provides several features like view centering and looped playback that speed up the annotation process. We evaluate our proposed tool by comparing TmoTA with the widely used manual labeling tools CVAT, Label Studio, and two semi-automated tools Supervisely and VATIC with respect to object labeling time and accuracy. The evaluation includes a user study and pre-case studies showing that the annotation time per object frame can be reduced by 20% to 40% over the first 20 annotated objects compared to the manual labeling tools.","PeriodicalId":314098,"journal":{"name":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TmoTA: Simple, Highly Responsive Tool for Multiple Object Tracking Annotation\",\"authors\":\"M. T. Oyshi, Sebastian Vogt, S. Gumhold\",\"doi\":\"10.1145/3544548.3581185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is applied in a multitude of sectors with very impressive results. This success is due to the availability of an ever-growing amount of data acquired by omnipresent sensor devices and platforms on the internet. But there is a scarcity of labeled data which is required for most ML methods. However, generation of labeled data requires much time and resources. In this paper, we propose a portable, Open Source, simple and responsive manual Tool for 2D multiple object Tracking Annotation (TmoTA). Besides responsiveness, our tool design provides several features like view centering and looped playback that speed up the annotation process. We evaluate our proposed tool by comparing TmoTA with the widely used manual labeling tools CVAT, Label Studio, and two semi-automated tools Supervisely and VATIC with respect to object labeling time and accuracy. The evaluation includes a user study and pre-case studies showing that the annotation time per object frame can be reduced by 20% to 40% over the first 20 annotated objects compared to the manual labeling tools.\",\"PeriodicalId\":314098,\"journal\":{\"name\":\"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544548.3581185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544548.3581185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习应用于许多领域,并取得了令人印象深刻的成果。这种成功是由于无处不在的传感器设备和平台在互联网上获取的数据量不断增加。但是大多数ML方法所需要的标记数据是稀缺的。然而,标记数据的生成需要大量的时间和资源。本文提出了一种可移植、开源、简单、响应灵敏的2D多目标跟踪标注(TmoTA)手动工具。除了响应性之外,我们的工具设计还提供了一些特性,如视图居中和循环播放,这些特性可以加快注释过程。我们通过比较TmoTA与广泛使用的手动标记工具CVAT, Label Studio以及两种半自动工具supervise和VATIC在对象标记时间和准确性方面对我们提出的工具进行了评估。评估包括用户研究和预案例研究,表明与手动标记工具相比,每个对象框架的注释时间可以在前20个注释对象中减少20%到40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TmoTA: Simple, Highly Responsive Tool for Multiple Object Tracking Annotation
Machine learning is applied in a multitude of sectors with very impressive results. This success is due to the availability of an ever-growing amount of data acquired by omnipresent sensor devices and platforms on the internet. But there is a scarcity of labeled data which is required for most ML methods. However, generation of labeled data requires much time and resources. In this paper, we propose a portable, Open Source, simple and responsive manual Tool for 2D multiple object Tracking Annotation (TmoTA). Besides responsiveness, our tool design provides several features like view centering and looped playback that speed up the annotation process. We evaluate our proposed tool by comparing TmoTA with the widely used manual labeling tools CVAT, Label Studio, and two semi-automated tools Supervisely and VATIC with respect to object labeling time and accuracy. The evaluation includes a user study and pre-case studies showing that the annotation time per object frame can be reduced by 20% to 40% over the first 20 annotated objects compared to the manual labeling tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterizing the Technology Needs of Vulnerable Populations for Participation in Research and Design by Adopting Maslow’s Hierarchy of Needs Playing with Power Tools: Design Toolkits and the Framing of Equity "It’s like With the Pregnancy Tests": Co-design of Speculative Technology for Public HIV-related Stigma and its Implications for Social Media Potential and Challenges of DIY Smart Homes with an ML-intensive Camera Sensor Understanding People’s Concerns and Attitudes Toward Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1