影响聚合物内防腐涂层高压灭菌试验结果的因素研究

M. Kovalev, E. Alekseeva, N. Shaposhnikov, D. Lyashenko
{"title":"影响聚合物内防腐涂层高压灭菌试验结果的因素研究","authors":"M. Kovalev, E. Alekseeva, N. Shaposhnikov, D. Lyashenko","doi":"10.3390/iec2m-09262","DOIUrl":null,"url":null,"abstract":"In the oil and gas industry the majority of equipment failure incidents are caused by corrosion. One of the effective methods for corrosion protection is usage of different coatings systems. The article presents the results of polymer powder coatings properties research that used to protect the inner wall of field pipelines.\nAutoclave tests were used for researching coatings properties. Autoclave studies consisted of decompression tests and HT/HP immersion tests in simulated environments. The studies were carried out in solutions containing CO2, H2S in the gas phase, as well as in the phases of combined composition. The liquid phase was 5% NaCl with different pH levels. The influence of pressure release time, exposure time, pressure release cyclicity and composition of test solution on the functional properties of the coating was studied. Systems based on polymer powder coatings were used as test samples.\nThe work result is the clarification of the autoclave tests methodological features and the identification of factors affecting the results repeatability. Identical coating systems have been tested over a wide temperature range, showing signs of coating degradation as test temperatures increase. Also given an example of autoclave test usage as a method for detecting low quality application of paint system. The results of the work will be useful in planning a test program for the development of new anticorrosive internal pipe coatings.","PeriodicalId":429720,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of factors influencing on the autoclave tests results of internal anticorrosive polymer coatings\",\"authors\":\"M. Kovalev, E. Alekseeva, N. Shaposhnikov, D. Lyashenko\",\"doi\":\"10.3390/iec2m-09262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the oil and gas industry the majority of equipment failure incidents are caused by corrosion. One of the effective methods for corrosion protection is usage of different coatings systems. The article presents the results of polymer powder coatings properties research that used to protect the inner wall of field pipelines.\\nAutoclave tests were used for researching coatings properties. Autoclave studies consisted of decompression tests and HT/HP immersion tests in simulated environments. The studies were carried out in solutions containing CO2, H2S in the gas phase, as well as in the phases of combined composition. The liquid phase was 5% NaCl with different pH levels. The influence of pressure release time, exposure time, pressure release cyclicity and composition of test solution on the functional properties of the coating was studied. Systems based on polymer powder coatings were used as test samples.\\nThe work result is the clarification of the autoclave tests methodological features and the identification of factors affecting the results repeatability. Identical coating systems have been tested over a wide temperature range, showing signs of coating degradation as test temperatures increase. Also given an example of autoclave test usage as a method for detecting low quality application of paint system. The results of the work will be useful in planning a test program for the development of new anticorrosive internal pipe coatings.\",\"PeriodicalId\":429720,\"journal\":{\"name\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iec2m-09262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iec2m-09262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在石油和天然气工业中,大多数设备故障事件都是由腐蚀引起的。使用不同的涂层体系是有效的防腐方法之一。本文介绍了油田管道内壁保护用高分子粉末涂料的性能研究成果。采用高压灭菌试验研究了涂层的性能。高压灭菌器研究包括在模拟环境下的减压试验和高温/高压浸泡试验。该研究是在含有CO2, H2S的气相溶液中进行的,以及在组合组成的相中进行的。液相为5% NaCl, pH值不同。研究了压力释放时间、曝光时间、压力释放循环度和测试溶液组成对涂层功能性能的影响。采用基于聚合物粉末涂料的系统作为测试样品。工作结果是澄清了高压灭菌器试验方法的特点,并确定了影响结果重复性的因素。相同的涂层系统已经在很宽的温度范围内进行了测试,随着测试温度的升高,显示出涂层降解的迹象。并给出了用高压灭菌器检测涂料体系低质量应用的实例。研究结果将有助于制定新的管道内防腐涂料的试验方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of factors influencing on the autoclave tests results of internal anticorrosive polymer coatings
In the oil and gas industry the majority of equipment failure incidents are caused by corrosion. One of the effective methods for corrosion protection is usage of different coatings systems. The article presents the results of polymer powder coatings properties research that used to protect the inner wall of field pipelines. Autoclave tests were used for researching coatings properties. Autoclave studies consisted of decompression tests and HT/HP immersion tests in simulated environments. The studies were carried out in solutions containing CO2, H2S in the gas phase, as well as in the phases of combined composition. The liquid phase was 5% NaCl with different pH levels. The influence of pressure release time, exposure time, pressure release cyclicity and composition of test solution on the functional properties of the coating was studied. Systems based on polymer powder coatings were used as test samples. The work result is the clarification of the autoclave tests methodological features and the identification of factors affecting the results repeatability. Identical coating systems have been tested over a wide temperature range, showing signs of coating degradation as test temperatures increase. Also given an example of autoclave test usage as a method for detecting low quality application of paint system. The results of the work will be useful in planning a test program for the development of new anticorrosive internal pipe coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of structural heterogeneity of high-strength OCTG tubes on sulfide corrosion cracking resistance Quantitative description of the microstructure of duplex stainless steels using selective etching DETERMINATION OF THE REACTION RATE CONTROLLING RESISTANCE OF GOETHITE IRON ORE REDUCTION USING CO/CO2 GASES FROM WOOD CHARCOAL Numerical and Analytical Analysis of the Low Cycle Fatigue Behavior of Notched and Un-notched 316 L (N) Austenitic Stainless Steel Samples at Ambient and Elevated Temperatures Investigation of factors influencing on the autoclave tests results of internal anticorrosive polymer coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1