快速,可扩展的检测“搭载”移动应用程序

Wu Zhou, Yajin Zhou, Michael C. Grace, Xuxian Jiang, S. Zou
{"title":"快速,可扩展的检测“搭载”移动应用程序","authors":"Wu Zhou, Yajin Zhou, Michael C. Grace, Xuxian Jiang, S. Zou","doi":"10.1145/2435349.2435377","DOIUrl":null,"url":null,"abstract":"Mobile applications (or apps) are rapidly growing in number and variety. These apps provide useful features, but also bring certain privacy and security risks. For example, malicious authors may attach destructive payloads to legitimate apps to create so-called \"piggybacked\" apps and advertise them in various app markets to infect unsuspecting users. To detect them, existing approaches typically employ pair-wise comparison, which unfortunately has limited scalability. In this paper, we present a fast and scalable approach to detect these apps in existing Android markets. Based on the fact that the attached payload is not an integral part of a given app's primary functionality, we propose a module decoupling technique to partition an app's code into primary and non-primary modules. Also, noticing that piggybacked apps share the same primary modules as the original apps, we develop a feature fingerprint technique to extract various semantic features (from primary modules) and convert them into feature vectors. We then construct a metric space and propose a linearithmic search algorithm (with O(n log n) time complexity) to efficiently and scalably detect piggybacked apps. We have implemented a prototype and used it to study 84,767 apps collected from various Android markets in 2011. Our results show that the processing of these apps takes less than nine hours on a single machine. In addition, among these markets, piggybacked apps range from 0.97% to 2.7% (the official Android Market has 1%). Further investigation shows that they are mainly used to steal ad revenue from the original developers and implant malicious payloads (e.g., for remote bot control). These results demonstrate the effectiveness and scalability of our approach.","PeriodicalId":118139,"journal":{"name":"Proceedings of the third ACM conference on Data and application security and privacy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"241","resultStr":"{\"title\":\"Fast, scalable detection of \\\"Piggybacked\\\" mobile applications\",\"authors\":\"Wu Zhou, Yajin Zhou, Michael C. Grace, Xuxian Jiang, S. Zou\",\"doi\":\"10.1145/2435349.2435377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile applications (or apps) are rapidly growing in number and variety. These apps provide useful features, but also bring certain privacy and security risks. For example, malicious authors may attach destructive payloads to legitimate apps to create so-called \\\"piggybacked\\\" apps and advertise them in various app markets to infect unsuspecting users. To detect them, existing approaches typically employ pair-wise comparison, which unfortunately has limited scalability. In this paper, we present a fast and scalable approach to detect these apps in existing Android markets. Based on the fact that the attached payload is not an integral part of a given app's primary functionality, we propose a module decoupling technique to partition an app's code into primary and non-primary modules. Also, noticing that piggybacked apps share the same primary modules as the original apps, we develop a feature fingerprint technique to extract various semantic features (from primary modules) and convert them into feature vectors. We then construct a metric space and propose a linearithmic search algorithm (with O(n log n) time complexity) to efficiently and scalably detect piggybacked apps. We have implemented a prototype and used it to study 84,767 apps collected from various Android markets in 2011. Our results show that the processing of these apps takes less than nine hours on a single machine. In addition, among these markets, piggybacked apps range from 0.97% to 2.7% (the official Android Market has 1%). Further investigation shows that they are mainly used to steal ad revenue from the original developers and implant malicious payloads (e.g., for remote bot control). These results demonstrate the effectiveness and scalability of our approach.\",\"PeriodicalId\":118139,\"journal\":{\"name\":\"Proceedings of the third ACM conference on Data and application security and privacy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"241\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the third ACM conference on Data and application security and privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2435349.2435377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM conference on Data and application security and privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435349.2435377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 241

摘要

移动应用程序(或应用程序)的数量和种类都在迅速增长。这些应用程序提供了有用的功能,但也带来了一定的隐私和安全风险。例如,恶意作者可能会在合法应用程序上附加破坏性的有效载荷,以创建所谓的“搭载”应用程序,并在各种应用程序市场上做广告,以感染毫无防备的用户。为了检测它们,现有的方法通常采用成对比较,不幸的是,这种方法具有有限的可伸缩性。在本文中,我们提出了一种快速且可扩展的方法来检测现有Android市场中的这些应用。基于附加的有效负载不是给定应用程序主要功能的组成部分这一事实,我们提出了一种模块解耦技术,将应用程序的代码划分为主要和非主要模块。此外,注意到搭载的应用程序与原始应用程序共享相同的主模块,我们开发了一种特征指纹技术来提取各种语义特征(从主模块)并将其转换为特征向量。然后,我们构建了一个度量空间,并提出了一个线性搜索算法(具有O(n log n)时间复杂度),以有效地、可扩展地检测搭载应用程序。我们已经实现了一个原型,并使用它来研究2011年从各种Android市场收集的84,767个应用。我们的研究结果表明,在一台机器上处理这些应用程序的时间不到9小时。此外,在这些市场中,搭载应用的比例从0.97%到2.7%不等(Android官方市场为1%)。进一步调查表明,它们主要用于从原始开发者那里窃取广告收入,并植入恶意有效载荷(例如,用于远程机器人控制)。这些结果证明了我们的方法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast, scalable detection of "Piggybacked" mobile applications
Mobile applications (or apps) are rapidly growing in number and variety. These apps provide useful features, but also bring certain privacy and security risks. For example, malicious authors may attach destructive payloads to legitimate apps to create so-called "piggybacked" apps and advertise them in various app markets to infect unsuspecting users. To detect them, existing approaches typically employ pair-wise comparison, which unfortunately has limited scalability. In this paper, we present a fast and scalable approach to detect these apps in existing Android markets. Based on the fact that the attached payload is not an integral part of a given app's primary functionality, we propose a module decoupling technique to partition an app's code into primary and non-primary modules. Also, noticing that piggybacked apps share the same primary modules as the original apps, we develop a feature fingerprint technique to extract various semantic features (from primary modules) and convert them into feature vectors. We then construct a metric space and propose a linearithmic search algorithm (with O(n log n) time complexity) to efficiently and scalably detect piggybacked apps. We have implemented a prototype and used it to study 84,767 apps collected from various Android markets in 2011. Our results show that the processing of these apps takes less than nine hours on a single machine. In addition, among these markets, piggybacked apps range from 0.97% to 2.7% (the official Android Market has 1%). Further investigation shows that they are mainly used to steal ad revenue from the original developers and implant malicious payloads (e.g., for remote bot control). These results demonstrate the effectiveness and scalability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of grammar on security of long passwords A new approach for delegation in usage control Session details: Poster session Multi-user dynamic proofs of data possession using trusted hardware All your browser-saved passwords could belong to us: a security analysis and a cloud-based new design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1